Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ssbuild/semantic_segmentation


https://github.com/ssbuild/semantic_segmentation

Last synced: 4 days ago
JSON representation

Awesome Lists containing this project

README

        

```text
2024-04-22 简化
2023-10-24 initial semantic segmentation
```

## update information
- [deep_training](https://github.com/ssbuild/deep_training)

## install
- pip install -U -r requirements.txt
- 如果无法安装, 可以切换官方源 pip install -i https://pypi.org/simple -U -r requirements.txt

## weigtht select one is suitable for you
支持且不限于以下权重 , See all SegFormer models at https://huggingface.co/models?filter=segformer
- [mit-b0](https://huggingface.co/nvidia/mit-b0)
- [segformer-b3-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b3-finetuned-ade-512-512)
- [segformer-b5-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b5-finetuned-cityscapes-1024-1024)

## data sample
- open_data https://github.com/ssbuild/open_data
- sidewalk-semantic https://huggingface.co/datasets/segments/sidewalk-semantic

## infer
# infer_finetuning.py 推理微调模型
# infer_lora_finetuning.py 推理微调模型
python infer_finetuning.py

## training
```text
# 制作数据
cd scripts
bash train_full.sh -m dataset


注: num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量
dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0)

# 全参数训练
bash train_full.sh -m train

```

## 训练参数
[训练参数](args.MD)

## 友情链接

- [pytorch-task-example](https://github.com/ssbuild/pytorch-task-example)
- [tf-task-example](https://github.com/ssbuild/tf-task-example)
- [chatmoss_finetuning](https://github.com/ssbuild/chatmoss_finetuning)
- [chatglm_finetuning](https://github.com/ssbuild/chatglm_finetuning)
- [chatglm2_finetuning](https://github.com/ssbuild/chatglm2_finetuning)
- [chatglm3_finetuning](https://github.com/ssbuild/chatglm3_finetuning)
- [t5_finetuning](https://github.com/ssbuild/t5_finetuning)
- [llm_finetuning](https://github.com/ssbuild/llm_finetuning)
- [llm_rlhf](https://github.com/ssbuild/llm_rlhf)
- [chatglm_rlhf](https://github.com/ssbuild/chatglm_rlhf)
- [t5_rlhf](https://github.com/ssbuild/t5_rlhf)
- [rwkv_finetuning](https://github.com/ssbuild/rwkv_finetuning)
- [baichuan_finetuning](https://github.com/ssbuild/baichuan_finetuning)

##
纯粹而干净的代码

## 参考

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=ssbuild/semantic_segmentation&type=Date)](https://star-history.com/#ssbuild/semantic_segmentation&Date)