Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ssydasheng/neural-kernel-network
Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326
https://github.com/ssydasheng/neural-kernel-network
extrapolation gaussian-processes kernel-methods machine-learning
Last synced: about 1 month ago
JSON representation
Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326
- Host: GitHub
- URL: https://github.com/ssydasheng/neural-kernel-network
- Owner: ssydasheng
- License: mit
- Created: 2017-10-28T01:54:14.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-07-10T12:21:22.000Z (over 6 years ago)
- Last Synced: 2024-04-28T03:34:50.852Z (8 months ago)
- Topics: extrapolation, gaussian-processes, kernel-methods, machine-learning
- Language: Python
- Homepage:
- Size: 2.7 MB
- Stars: 68
- Watchers: 9
- Forks: 3
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Neural Kernel Network
This code is jointly contributed by [Shengyang Sun](https://github.com/ssydasheng), [Guodong Zhang](https://github.com/gd-zhang), [Chaoqi Wang](https://github.com/alecwangcq) and [Wenyuan Zeng](https://github.com/joy820)
## Introduction
Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" (https://arxiv.org/abs/1806.04326)## Dependencies
This project runs with Python 3.6. Before running the code, you have to install
* [Tensorflow](https:www.tensorflow.org)
* [GPflow-Slim](https://github.com/ssydasheng/GPflow-Slim)## Experiments
Below we shows some examples to run the experiments.
We also provide experiment figures and logging files in [results](./results) folder, as a reference.
### Time Series
```
python exp/time-series.py --name airline --kern nkn
```
### Regression
```
python exp/regression.py --data energy --split uci_woval --kern nkn
python exp/regression.py --data energy --split uci_woval_pca --kern nkn
```
### Bayesian Optimization
```
python exp/bayes-opt.py --name sty --kern nkn --run 0
```
### Texture Extrapolation
```
python exp/texture.py --data pave --kern nkn
```
## Citation
To cite this work, please use
```
@article{sun2018differentiable,
title={Differentiable Compositional Kernel Learning for Gaussian Processes},
author={Sun, Shengyang and Zhang, Guodong and Wang, Chaoqi and Zeng, Wenyuan and Li, Jiaman and Grosse, Roger},
journal={arXiv preprint arXiv:1806.04326},
year={2018}
}
```