Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stac-utils/stac-pydantic
Pydantic data models for the STAC spec
https://github.com/stac-utils/stac-pydantic
Last synced: about 2 months ago
JSON representation
Pydantic data models for the STAC spec
- Host: GitHub
- URL: https://github.com/stac-utils/stac-pydantic
- Owner: stac-utils
- License: mit
- Created: 2020-03-10T00:10:57.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2024-10-14T12:45:28.000Z (3 months ago)
- Last Synced: 2024-10-14T13:01:10.445Z (3 months ago)
- Language: Python
- Homepage:
- Size: 312 KB
- Stars: 60
- Watchers: 8
- Forks: 24
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- awesome-earthobservation-code - stac-pydantic - Pydantic data models for the STAC spec `Python` (`Python` processing of optical imagery (non deep learning) / Cloud Native Geospatial)
README
# stac-pydantic
[![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/stac-utils/stac-pydantic/cicd.yml?style=for-the-badge)](https://github.com/stac-utils/stac-pydantic/actions/workflows/cicd.yml)
[Pydantic](https://pydantic-docs.helpmanual.io/) models for [STAC](https://github.com/radiantearth/stac-spec) Catalogs, Collections, Items, and the [STAC API](https://github.com/radiantearth/stac-api-spec) spec.
Initially developed by [arturo-ai](https://github.com/arturo-ai).The main purpose of this library is to provide reusable request/response models for tools such as [fastapi](https://fastapi.tiangolo.com/).
For more comprehensive schema validation and robust extension support, use [pystac](https://github.com/stac-utils/pystac).## Installation
```shell
python -m pip install stac-pydantic# or
python -m pip install stac-pydantic["validation"]
```For local development:
```shell
python -m pip install -e '.[dev,lint]'
```| stac-pydantic | STAC Version | STAC API Version | Pydantic Version |
|--------------|---------------|------------------|-----------------|
| 1.2.x | 1.0.0-beta.1 | <1* | ^1.6 |
| 1.3.x | 1.0.0-beta.2 | <1* | ^1.6 |
| 2.0.x | 1.0.0 | <1* | ^1.6 |
| 3.0.x | 1.0.0 | 1.0.0 | ^2.4 |
| 3.1.x | 1.0.0 | 1.0.0 | ^2.4 |\* various beta releases, specs not fully implemented
## Development
Install the [pre-commit](https://pre-commit.com/) hooks:
```shell
pre-commit install
```## Testing
Ensure you have all Python versions installed that the tests will be run against. If using pyenv, run:
```shell
pyenv install 3.8.18
pyenv install 3.9.18
pyenv install 3.10.13
pyenv install 3.11.5
pyenv local 3.8.18 3.9.18 3.10.13 3.11.5
```Run the entire test suite:
```shell
tox
```Run a single test case using the standard pytest convention:
```shell
python -m pytest -v tests/test_models.py::test_item_extensions
```## Usage
### Loading Models
Load data into models with standard pydantic:
```python
from stac_pydantic import Catalogstac_catalog = {
"type": "Catalog",
"stac_version": "1.0.0",
"id": "sample",
"description": "This is a very basic sample catalog.",
"links": [
{
"href": "item.json",
"rel": "item"
}
]
}catalog = Catalog(**stac_catalog)
assert catalog.id == "sample"
assert catalog.links[0].href == "item.json"
```### Extensions
STAC defines many extensions which let the user customize the data in their catalog. `stac-pydantic.extensions.validate_extensions` gets the JSON schemas from the URLs provided in the `stac_extensions` property (caching the last fetched ones), and will validate a `dict`, `Item`, `Collection` or `Catalog` against those fetched schemas:
```python
from stac_pydantic import Item
from stac_pydantic.extensions import validate_extensionsstac_item = {
"id": "12345",
"type": "Feature",
"stac_extensions": [
"https://stac-extensions.github.io/eo/v1.0.0/schema.json"
],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
"eo:cloud_cover": 25,
},
"links": [],
"assets": {},
}model = Item(**stac_item)
validate_extensions(model, reraise_exception=True)
assert getattr(model.properties, "eo:cloud_cover") == 25
```The complete list of current STAC Extensions can be found [here](https://stac-extensions.github.io/).
#### Vendor Extensions
The same procedure described above works for any STAC Extension schema as long as it can be loaded from a public url.
### STAC API
The [STAC API Specs](https://github.com/radiantearth/stac-api-spec) extent the core STAC specification for implementing dynamic catalogs. STAC Objects used in an API context should always import models from the `api` subpackage. This package extends
Catalog, Collection, and Item models with additional fields and validation rules and introduces Collections and ItemCollections models and Pagination/ Search Links.
It also implements models for defining ItemSeach queries.```python
from stac_pydantic.api import Item, ItemCollectionstac_item = Item(**{
"id": "12345",
"type": "Feature",
"stac_extensions": [],
"geometry": { "type": "Point", "coordinates": [0, 0] },
"bbox": [0.0, 0.0, 0.0, 0.0],
"properties": {
"datetime": "2020-03-09T14:53:23.262208+00:00",
},
"collection": "CS3",
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/collections/CS3-20160503_132130_04/items/CS3-20160503_132130_04.json"
},
{
"rel": "collection",
"href": "http://stac.example.com/catalog/CS3-20160503_132130_04/catalog.json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog"
}],
"assets": {},
})stac_item_collection = ItemCollection(**{
"type": "FeatureCollection",
"features": [stac_item],
"links": [
{
"rel": "self",
"href": "http://stac.example.com/catalog/search?collection=CS3",
"type": "application/geo+json"
},
{
"rel": "root",
"href": "http://stac.example.com/catalog",
"type": "application/json"
}],
})
```### Exporting Models
Most STAC extensions are namespaced with a colon (ex `eo:gsd`) to keep them distinct from other extensions. Because
Python doesn't support the use of colons in variable names, we use [Pydantic aliasing](https://pydantic-docs.helpmanual.io/usage/model_config/#alias-generator)
to add the namespace upon model export. This requires [exporting](https://pydantic-docs.helpmanual.io/usage/exporting_models/)
the model with the `by_alias = True` parameter. Export methods (`model_dump()` and `model_dump_json()`) for models in this library have `by_alias` and `exclude_unset` st to `True` by default:```python
item_dict = item.model_dump()
assert item_dict['properties']['landsat:row'] == item.properties.row == 250
```### CLI
```text
Usage: stac-pydantic [OPTIONS] COMMAND [ARGS]...stac-pydantic cli group
Options:
--help Show this message and exit.Commands:
validate-item Validate STAC Item
```