Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/stan-dev/pystan2

PyStan, the Python interface to Stan
https://github.com/stan-dev/pystan2

machine-learning probabilistic-programming python stan statistics

Last synced: 2 months ago
JSON representation

PyStan, the Python interface to Stan

Awesome Lists containing this project

README

        

PyStan: The Python Interface to Stan
====================================

.. image:: https://raw.githubusercontent.com/stan-dev/logos/master/logo.png
:alt: Stan logo
:scale: 50 %

|pypi| |travis| |appveyor| |zenodo|

.. tip:: PyStan 3 is available for Linux and macOS users. Visit the `PyStan 3 documentation `_ for details. PyStan 2 is not maintained.

**PyStan** provides a Python interface to Stan, a package for Bayesian inference
using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

For more information on `Stan `_ and its modeling language,
see the Stan User's Guide and Reference Manual at `http://mc-stan.org/
`_.

Important links
---------------

- HTML documentation: https://pystan2.readthedocs.org
- Issue tracker: https://github.com/stan-dev/pystan/issues
- Source code repository: https://github.com/stan-dev/pystan
- Stan: http://mc-stan.org/
- Stan User's Guide and Reference Manual (pdf) available at http://mc-stan.org

Related projects
----------------

- ArviZ: `Exploratory analysis of Bayesian models with Python `_ by @arviz-devs
- Jupyter tool: `StanMagic `_ by @Arvinds-ds
- Jupyter tool: `JupyterStan `_ by @janfreyberg
- Scikit-learn integration: `pystan-sklearn `_ by @rgerkin.

Projects using PyStan
---------------------
- BAMBI: `BAyesian Model-Building Interface `_ by @bambinos
- hBayesDM: `hierarchical Bayesian modeling of Decision-Making tasks `_ by @CCS-Lab
- Orbit: `Object-oRiented BayesIan Timeseries models `_ by @uber
- Prophet: `Timeseries forecasting `_ by @facebook

Similar projects
----------------

- PyMC3: https://docs.pymc.io/
- emcee: https://emcee.readthedocs.io/en/stable/

PyStan3 / Stan3
---------------
The development of PyStan3 with updated API can be found under `stan-dev/pystan-next `_

Detailed Installation Instructions
----------------------------------
Detailed installation instructions can be found in the
`doc/installation_beginner.md `_ file.

Windows Installation Instructions
---------------------------------
Detailed installation instructions for Windows can be found in docs under `PyStan on Windows `_

Quick Installation (Linux and macOS)
------------------------------------

`NumPy `_ and `Cython `_
(version 0.22 or greater) are required. `matplotlib `_
is optional. ArviZ is recommended for visualization and analysis.

PyStan and the required packages may be installed from the `Python Package Index
`_ using ``pip``.

::

pip install pystan

Alternatively, if Cython (version 0.22 or greater) and NumPy are already
available, PyStan may be installed from source with the following commands

::

git clone --recursive https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install

To install latest development version user can also use ``pip``

::

pip install git+https://github.com/stan-dev/pystan

If you encounter an ``ImportError`` after compiling from source, try changing
out of the source directory before attempting ``import pystan``. On Linux and
OS X ``cd /tmp`` will work.

``make`` (``mingw32-make`` on Windows) is a requirement for building from source.

Example
-------

.. code-block:: python

import pystan
import numpy as np
import matplotlib.pyplot as plt

schools_code = """
data {
int J; // number of schools
real y[J]; // estimated treatment effects
real sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] = mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""

schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}

sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)

print(fit)

eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)

# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()
plt.show()

# updated traceplot can be plotted with
import arviz as az
az.plot_trace(fit)

.. |pypi| image:: https://badge.fury.io/py/pystan.png
:target: https://badge.fury.io/py/pystan
:alt: pypi version

.. |travis| image:: https://travis-ci.org/stan-dev/pystan.png?branch=master
:target: https://travis-ci.org/stan-dev/pystan
:alt: travis-ci build status

.. |appveyor| image:: https://ci.appveyor.com/api/projects/status/49e69yl5ngxkpmab?svg=true
:target: https://ci.appveyor.com/project/pystan/pystan
:alt: appveyor-ci build status

.. |zenodo| image:: https://zenodo.org/badge/10256919.svg
:target: https://zenodo.org/badge/latestdoi/10256919
:alt: zenodo citation DOI