Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/starsdeep/R2Plus1D-MXNet
R2Plus1D MXNet Implementation
https://github.com/starsdeep/R2Plus1D-MXNet
Last synced: 2 months ago
JSON representation
R2Plus1D MXNet Implementation
- Host: GitHub
- URL: https://github.com/starsdeep/R2Plus1D-MXNet
- Owner: starsdeep
- Created: 2018-07-11T04:37:50.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-07-11T04:47:33.000Z (over 6 years ago)
- Last Synced: 2024-08-01T22:41:16.487Z (5 months ago)
- Language: Python
- Size: 9.77 KB
- Stars: 11
- Watchers: 6
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - R2Plus1D
README
# R2Plus1D-mxnet
R2Plus1D MXNet Implementation
R2Plus1D: [A Closer Look at Spatiotemporal Convolutions for Action Recognition (CVPR 2018)](https://arxiv.org/pdf/1711.11248.pdf)
Caffe2 Implementation: https://github.com/facebookresearch/R2Plus1D
## Dataset
[UCF101](http://crcv.ucf.edu/data/UCF101.php)## Result
Achieved **92.6%** Accuracy(Clip@1, prediction using only 1 clip) on UCF101 Dataset, which is **1.3% higher than the original Caffe2 model**(Accuracy 91.3%).
## Usage
#### Requirements
* MXNet with GPU support
* opencv### Data Preparation
* Download and extract [UCF101](http://crcv.ucf.edu/data/UCF101.php) dataset to ~/UCF101
* Download pre-trained model from [Caffe2 Pre-trained model](https://github.com/facebookresearch/R2Plus1D/blob/master/tutorials/models.md) to ~/r2.5d_d34_l32.pkl
#### Training
```
$ python train.py --gpus 0,1,2,3,4,5,6,7 --pretrained ~/r2.5d_d34_l32.pkl --output ~/r2plus1d_output --batch_per_device 4 --lr 1e-4
--model_depth 34 --wd 0.005 --num_class 101 --num_epoch 80
```#### Testing
Assume the training output directory is ~/r2plus1d_output and the epoch number we want to test is 80.
```
$ python validation.py --gpus 0 --output ~/r2plus1d_output --eval_epoch 80 --batch_per_device 48 --model_prefix test
```