Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/starsdeep/R2Plus1D-MXNet

R2Plus1D MXNet Implementation
https://github.com/starsdeep/R2Plus1D-MXNet

Last synced: 2 months ago
JSON representation

R2Plus1D MXNet Implementation

Awesome Lists containing this project

README

        

# R2Plus1D-mxnet

R2Plus1D MXNet Implementation

R2Plus1D: [A Closer Look at Spatiotemporal Convolutions for Action Recognition (CVPR 2018)](https://arxiv.org/pdf/1711.11248.pdf)

Caffe2 Implementation: https://github.com/facebookresearch/R2Plus1D

## Dataset
[UCF101](http://crcv.ucf.edu/data/UCF101.php)

## Result

Achieved **92.6%** Accuracy(Clip@1, prediction using only 1 clip) on UCF101 Dataset, which is **1.3% higher than the original Caffe2 model**(Accuracy 91.3%).

## Usage

#### Requirements

* MXNet with GPU support
* opencv

### Data Preparation

* Download and extract [UCF101](http://crcv.ucf.edu/data/UCF101.php) dataset to ~/UCF101
* Download pre-trained model from [Caffe2 Pre-trained model](https://github.com/facebookresearch/R2Plus1D/blob/master/tutorials/models.md) to ~/r2.5d_d34_l32.pkl


#### Training
```
$ python train.py --gpus 0,1,2,3,4,5,6,7 --pretrained ~/r2.5d_d34_l32.pkl --output ~/r2plus1d_output --batch_per_device 4 --lr 1e-4
--model_depth 34 --wd 0.005 --num_class 101 --num_epoch 80
```

#### Testing

Assume the training output directory is ~/r2plus1d_output and the epoch number we want to test is 80.

```
$ python validation.py --gpus 0 --output ~/r2plus1d_output --eval_epoch 80 --batch_per_device 48 --model_prefix test
```