Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/statsmodels/statsmodels
Statsmodels: statistical modeling and econometrics in Python
https://github.com/statsmodels/statsmodels
count-model data-analysis data-science econometrics forecasting generalized-linear-models hypothesis-testing prediction python regression-models robust-estimation statistics timeseries-analysis
Last synced: 6 days ago
JSON representation
Statsmodels: statistical modeling and econometrics in Python
- Host: GitHub
- URL: https://github.com/statsmodels/statsmodels
- Owner: statsmodels
- License: bsd-3-clause
- Created: 2011-06-12T17:04:50.000Z (over 13 years ago)
- Default Branch: main
- Last Pushed: 2025-01-02T08:43:35.000Z (10 days ago)
- Last Synced: 2025-01-04T13:05:03.903Z (8 days ago)
- Topics: count-model, data-analysis, data-science, econometrics, forecasting, generalized-linear-models, hypothesis-testing, prediction, python, regression-models, robust-estimation, statistics, timeseries-analysis
- Language: Python
- Homepage: http://www.statsmodels.org/devel/
- Size: 52.1 MB
- Stars: 10,317
- Watchers: 288
- Forks: 3,200
- Open Issues: 2,858
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGES.md
- Contributing: CONTRIBUTING.rst
- License: LICENSE.txt
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-systematic-trading - statsmodels - with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg) | (TimeSeries Analysis / Cryptocurrencies)
- awesome_time_series_in_python - statsmodels
- awesome-python-machine-learning-resources - GitHub - 46% open · ⏱️ 23.08.2022): (机器学习框架)
- awesome-python-resources - GitHub - 46% open · ⏱️ 23.08.2022): (科学计算和数据分析)
- awesome-starred - statsmodels - Statsmodels: statistical modeling and econometrics in Python (Python)
- awesome-python-machine-learning - Statsmodels - Statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics and estimation and inference for statistical models. (Uncategorized / Uncategorized)
- awesome-data-science-development - statsmodel _Statistical modeling and econometrics in Python_
- awesome-marketing-machine-learning - statsmodels
- awesome-list - Statsmodels - Statistical modeling and econometrics in Python. (Linear Algebra / Statistics Toolkit / Statistical Toolkit)
- awesome_quantmetry - statsmodels
- jimsghstars - statsmodels/statsmodels - Statsmodels: statistical modeling and econometrics in Python (Python)
- StarryDivineSky - statsmodels/statsmodels
- awesome-ai-data-github-repos - Statsmodels: Statistical Modeling and Econometrics in Python
- awesome-ai-data-github-repos - Statsmodels: Statistical Modeling and Econometrics in Python
README
.. image:: docs/source/images/statsmodels-logo-v2-horizontal.svg
:alt: Statsmodels logo|PyPI Version| |Conda Version| |License| |Azure CI Build Status|
|Codecov Coverage| |Coveralls Coverage| |PyPI downloads| |Conda downloads|About statsmodels
=================statsmodels is a Python package that provides a complement to scipy for
statistical computations including descriptive statistics and estimation
and inference for statistical models.Documentation
=============The documentation for the latest release is at
https://www.statsmodels.org/stable/
The documentation for the development version is at
https://www.statsmodels.org/dev/
Recent improvements are highlighted in the release notes
https://www.statsmodels.org/stable/release/
Backups of documentation are available at https://statsmodels.github.io/stable/
and https://statsmodels.github.io/dev/.Main Features
=============* Linear regression models:
- Ordinary least squares
- Generalized least squares
- Weighted least squares
- Least squares with autoregressive errors
- Quantile regression
- Recursive least squares* Mixed Linear Model with mixed effects and variance components
* GLM: Generalized linear models with support for all of the one-parameter
exponential family distributions
* Bayesian Mixed GLM for Binomial and Poisson
* GEE: Generalized Estimating Equations for one-way clustered or longitudinal data
* Discrete models:- Logit and Probit
- Multinomial logit (MNLogit)
- Poisson and Generalized Poisson regression
- Negative Binomial regression
- Zero-Inflated Count models* RLM: Robust linear models with support for several M-estimators.
* Time Series Analysis: models for time series analysis- Complete StateSpace modeling framework
- Seasonal ARIMA and ARIMAX models
- VARMA and VARMAX models
- Dynamic Factor models
- Unobserved Component models- Markov switching models (MSAR), also known as Hidden Markov Models (HMM)
- Univariate time series analysis: AR, ARIMA
- Vector autoregressive models, VAR and structural VAR
- Vector error correction model, VECM
- exponential smoothing, Holt-Winters
- Hypothesis tests for time series: unit root, cointegration and others
- Descriptive statistics and process models for time series analysis* Survival analysis:
- Proportional hazards regression (Cox models)
- Survivor function estimation (Kaplan-Meier)
- Cumulative incidence function estimation* Multivariate:
- Principal Component Analysis with missing data
- Factor Analysis with rotation
- MANOVA
- Canonical Correlation* Nonparametric statistics: Univariate and multivariate kernel density estimators
* Datasets: Datasets used for examples and in testing
* Statistics: a wide range of statistical tests- diagnostics and specification tests
- goodness-of-fit and normality tests
- functions for multiple testing
- various additional statistical tests* Imputation with MICE, regression on order statistic and Gaussian imputation
* Mediation analysis
* Graphics includes plot functions for visual analysis of data and model results* I/O
- Tools for reading Stata .dta files, but pandas has a more recent version
- Table output to ascii, latex, and html* Miscellaneous models
* Sandbox: statsmodels contains a sandbox folder with code in various stages of
development and testing which is not considered "production ready". This covers
among others- Generalized method of moments (GMM) estimators
- Kernel regression
- Various extensions to scipy.stats.distributions
- Panel data models
- Information theoretic measuresHow to get it
=============
The main branch on GitHub is the most up to date codehttps://www.github.com/statsmodels/statsmodels
Source download of release tags are available on GitHub
https://github.com/statsmodels/statsmodels/tags
Binaries and source distributions are available from PyPi
https://pypi.org/project/statsmodels/
Binaries can be installed in Anaconda
conda install statsmodels
Getting the latest code
=======================Installing the most recent nightly wheel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The most recent nightly wheel can be installed using pip... code:: bash
python -m pip install -i https://pypi.anaconda.org/scientific-python-nightly-wheels/simple statsmodels --upgrade --use-deprecated=legacy-resolver
Installing from sources
~~~~~~~~~~~~~~~~~~~~~~~See INSTALL.txt for requirements or see the documentation
https://statsmodels.github.io/dev/install.html
Contributing
============
Contributions in any form are welcome, including:* Documentation improvements
* Additional tests
* New features to existing models
* New modelshttps://www.statsmodels.org/stable/dev/test_notes
for instructions on installing statsmodels in *editable* mode.
License
=======Modified BSD (3-clause)
Discussion and Development
==========================Discussions take place on the mailing list
https://groups.google.com/group/pystatsmodels
and in the issue tracker. We are very interested in feedback
about usability and suggestions for improvements.Bug Reports
===========Bug reports can be submitted to the issue tracker at
https://github.com/statsmodels/statsmodels/issues
.. |Azure CI Build Status| image:: https://dev.azure.com/statsmodels/statsmodels-testing/_apis/build/status/statsmodels.statsmodels?branchName=main
:target: https://dev.azure.com/statsmodels/statsmodels-testing/_build/latest?definitionId=1&branchName=main
.. |Codecov Coverage| image:: https://codecov.io/gh/statsmodels/statsmodels/branch/main/graph/badge.svg
:target: https://codecov.io/gh/statsmodels/statsmodels
.. |Coveralls Coverage| image:: https://coveralls.io/repos/github/statsmodels/statsmodels/badge.svg?branch=main
:target: https://coveralls.io/github/statsmodels/statsmodels?branch=main
.. |PyPI downloads| image:: https://img.shields.io/pypi/dm/statsmodels?label=PyPI%20Downloads
:alt: PyPI - Downloads
:target: https://pypi.org/project/statsmodels/
.. |Conda downloads| image:: https://img.shields.io/conda/dn/conda-forge/statsmodels.svg?label=Conda%20downloads
:target: https://anaconda.org/conda-forge/statsmodels/
.. |PyPI Version| image:: https://img.shields.io/pypi/v/statsmodels.svg
:target: https://pypi.org/project/statsmodels/
.. |Conda Version| image:: https://anaconda.org/conda-forge/statsmodels/badges/version.svg
:target: https://anaconda.org/conda-forge/statsmodels/
.. |License| image:: https://img.shields.io/pypi/l/statsmodels.svg
:target: https://github.com/statsmodels/statsmodels/blob/main/LICENSE.txt