Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/stdlib-js/blas-ext-base-dnanasum

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.
https://github.com/stdlib-js/blas-ext-base-dnanasum

abs absolute blas extended javascript l1-norm l1norm manhattan math mathematics node node-js nodejs norm statistics stats stdlib sum summation total

Last synced: about 8 hours ago
JSON representation

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.

Awesome Lists containing this project

README

        


About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# dnanasum

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

> Calculate the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

The [_L1_ norm][l1norm] is defined as

```math
\|\mathbf{x}\|_1 = \sum_{i=0}^{n-1} \vert x_i \vert
```

## Installation

```bash
npm install @stdlib/blas-ext-base-dnanasum
```

Alternatively,

- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

## Usage

```javascript
var dnanasum = require( '@stdlib/blas-ext-base-dnanasum' );
```

#### dnanasum( N, x, strideX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasum( N, x, 1 );
// returns 5.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **strideX**: index increment for `x`.

The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values ([_L1_ norm][l1norm]) for every other element in the strided array,

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );

var v = dnanasum( 4, x, 2 );
// returns 5.0
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dnanasum( 4, x1, 2 );
// returns 9.0
```

#### dnanasum.ndarray( N, x, strideX, offsetX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values and using alternative indexing semantics.

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = dnanasum.ndarray( 4, x, 1, 0 );
// returns 5.0
```

The function has the following additional parameters:

- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values ([_L1_ norm][l1norm]) for every other value in the strided array starting from the second value

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dnanasum.ndarray( 4, x, 2, 1 );
// returns 9.0
```

## Notes

- If `N <= 0`, both functions return `0.0`.

## Examples

```javascript
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var dnanasum = require( '@stdlib/blas-ext-base-dnanasum' );

function rand() {
if ( bernoulli( 0.8 ) > 0 ) {
return discreteUniform( 0, 100 );
}
return NaN;
}

var x = filledarrayBy( 10, 'float64', rand );
console.log( x );

var v = dnanasum( x.length, x, 1 );
console.log( v );
```

* * *

## C APIs

### Usage

```c
#include "stdlib/blas/ext/base/dnanasum.h"
```

#### stdlib_strided_dnanasum( N, \*X, strideX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values.

```c
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasum( 4, x, 1 );
// returns 7.0
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` index increment for `X`.

```c
double stdlib_strided_dnanasum( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dnanasum_ndarray( N, \*X, strideX, offsetX )

Computes the sum of absolute values ([_L1_ norm][l1norm]) of double-precision floating-point strided array elements, ignoring `NaN` values and using alternative indexing semantics.

```c
const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasum_ndarray( 4, x, 1, 0 );
// returns 7.0
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` index increment for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
double stdlib_strided_dnanasum_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

### Examples

```c
#include "stdlib/blas/ext/base/dnanasum.h"
#include

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, -3.0, -4.0, 5.0, -6.0, -7.0, 8.0, 0.0/0.0, 0.0/0.0 };

// Specify the number of elements:
const int N = 5;

// Specify the stride length:
const int strideX = 2;

// Compute the sum:
double v = stdlib_strided_dnanasum( N, x, strideX );

// Print the result:
printf( "sumabs: %lf\n", v );
}
```

* * *

## See Also

- [`@stdlib/blas-base/dasum`][@stdlib/blas/base/dasum]: compute the sum of absolute values (L1 norm).
- [`@stdlib/blas-ext/base/dasumpw`][@stdlib/blas/ext/base/dasumpw]: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements using pairwise summation.

* * *

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

---

## License

See [LICENSE][stdlib-license].

## Copyright

Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].

[npm-image]: http://img.shields.io/npm/v/@stdlib/blas-ext-base-dnanasum.svg
[npm-url]: https://npmjs.org/package/@stdlib/blas-ext-base-dnanasum

[test-image]: https://github.com/stdlib-js/blas-ext-base-dnanasum/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/blas-ext-base-dnanasum/actions/workflows/test.yml?query=branch:main

[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-ext-base-dnanasum/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/blas-ext-base-dnanasum?branch=main

[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im

[stdlib]: https://github.com/stdlib-js/stdlib

[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors

[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

[deno-url]: https://github.com/stdlib-js/blas-ext-base-dnanasum/tree/deno
[deno-readme]: https://github.com/stdlib-js/blas-ext-base-dnanasum/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/blas-ext-base-dnanasum/tree/umd
[umd-readme]: https://github.com/stdlib-js/blas-ext-base-dnanasum/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/blas-ext-base-dnanasum/tree/esm
[esm-readme]: https://github.com/stdlib-js/blas-ext-base-dnanasum/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/blas-ext-base-dnanasum/blob/main/branches.md

[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/blas-ext-base-dnanasum/main/LICENSE

[@stdlib/array/float64]: https://github.com/stdlib-js/array-float64

[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray

[l1norm]: https://en.wikipedia.org/wiki/Norm_%28mathematics%29

[@stdlib/blas/base/dasum]: https://github.com/stdlib-js/blas-base-dasum

[@stdlib/blas/ext/base/dasumpw]: https://github.com/stdlib-js/blas-ext-base-dasumpw