Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stdlib-js/blas-ext-base-dsnansum
Calculate the sum of single-precision floating-point strided array elements, ignoring NaN values, using extended accumulation, and returning an extended precision result.
https://github.com/stdlib-js/blas-ext-base-dsnansum
array blas extended float32 javascript math mathematics node node-js nodejs single statistics stats stdlib strided strided-array sum summation total typed
Last synced: about 13 hours ago
JSON representation
Calculate the sum of single-precision floating-point strided array elements, ignoring NaN values, using extended accumulation, and returning an extended precision result.
- Host: GitHub
- URL: https://github.com/stdlib-js/blas-ext-base-dsnansum
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-14T16:50:11.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-04-27T10:03:58.000Z (7 months ago)
- Last Synced: 2024-05-01T11:59:23.712Z (7 months ago)
- Topics: array, blas, extended, float32, javascript, math, mathematics, node, node-js, nodejs, single, statistics, stats, stdlib, strided, strided-array, sum, summation, total, typed
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 795 KB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# dsnansum
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Calculate the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
## Installation
```bash
npm install @stdlib/blas-ext-base-dsnansum
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var dsnansum = require( '@stdlib/blas-ext-base-dsnansum' );
```#### dsnansum( N, x, stride )
Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using extended accumulation, and returning an extended precision result.
```javascript
var Float32Array = require( '@stdlib/array-float32' );var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;var v = dsnansum( N, x, 1 );
// returns 1.0
```The function has the following parameters:
- **N**: number of indexed elements.
- **x**: input [`Float32Array`][@stdlib/array/float32].
- **stride**: index increment for `x`.The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element in `x`,
```javascript
var Float32Array = require( '@stdlib/array-float32' );var x = new Float32Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var v = dsnansum( 4, x, 2 );
// returns 5.0
```Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
```javascript
var Float32Array = require( '@stdlib/array-float32' );var x0 = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd elementvar v = dsnansum( 4, x1, 2 );
// returns 5.0
```#### dsnansum.ndarray( N, x, stride, offset )
Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using extended accumulation and alternative indexing semantics.
```javascript
var Float32Array = require( '@stdlib/array-float32' );var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var v = dsnansum.ndarray( 4, x, 1, 0 );
// returns 1.0
```The function has the following additional parameters:
- **offset**: starting index for `x`.
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
```javascript
var Float32Array = require( '@stdlib/array-float32' );var x = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dsnansum.ndarray( 4, x, 2, 1 );
// returns 5.0
```## Notes
- If `N <= 0`, both functions return `0.0`.
- Accumulated intermediate values are stored as double-precision floating-point numbers.## Examples
```javascript
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var dsnansum = require( '@stdlib/blas-ext-base-dsnansum' );function clbk() {
if ( bernoulli( 0.7 ) > 0 ) {
return discreteUniform( -10, 10 );
}
return NaN;
}var x = filledarrayBy( 10, 'float64', clbk );
console.log( x );var v = dsnansum( x.length, x, 1 );
console.log( v );
```* * *
## See Also
- [`@stdlib/stats-base/dsnanmean`][@stdlib/stats/base/dsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using extended accumulation, and returning an extended precision result.
- [`@stdlib/blas-ext/base/dssum`][@stdlib/blas/ext/base/dssum]: calculate the sum of single-precision floating-point strided array elements using extended accumulation and returning an extended precision result.
- [`@stdlib/blas-ext/base/sdsnansum`][@stdlib/blas/ext/base/sdsnansum]: calculate the sum of single-precision floating-point strided array elements, ignoring NaN values and using extended accumulation.
- [`@stdlib/blas-ext/base/snansum`][@stdlib/blas/ext/base/snansum]: calculate the sum of single-precision floating-point strided array elements, ignoring NaN values.* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/blas-ext-base-dsnansum.svg
[npm-url]: https://npmjs.org/package/@stdlib/blas-ext-base-dsnansum[test-image]: https://github.com/stdlib-js/blas-ext-base-dsnansum/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/blas-ext-base-dsnansum/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-ext-base-dsnansum/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/blas-ext-base-dsnansum?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/blas-ext-base-dsnansum/tree/deno
[deno-readme]: https://github.com/stdlib-js/blas-ext-base-dsnansum/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/blas-ext-base-dsnansum/tree/umd
[umd-readme]: https://github.com/stdlib-js/blas-ext-base-dsnansum/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/blas-ext-base-dsnansum/tree/esm
[esm-readme]: https://github.com/stdlib-js/blas-ext-base-dsnansum/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/blas-ext-base-dsnansum/blob/main/branches.md[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/blas-ext-base-dsnansum/main/LICENSE
[@stdlib/array/float32]: https://github.com/stdlib-js/array-float32
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
[@stdlib/stats/base/dsnanmean]: https://github.com/stdlib-js/stats-base-dsnanmean
[@stdlib/blas/ext/base/dssum]: https://github.com/stdlib-js/blas-ext-base-dssum
[@stdlib/blas/ext/base/sdsnansum]: https://github.com/stdlib-js/blas-ext-base-sdsnansum
[@stdlib/blas/ext/base/snansum]: https://github.com/stdlib-js/blas-ext-base-snansum