Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/stdlib-js/blas-ext-base-gnansumkbn

Calculate the sum of strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.
https://github.com/stdlib-js/blas-ext-base-gnansumkbn

array blas compensated extended javascript kahan kbn math mathematics node node-js nodejs statistics stats stdlib strided strided-array sum summation total

Last synced: about 3 hours ago
JSON representation

Calculate the sum of strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.

Awesome Lists containing this project

README

        


About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# gnansumkbn

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

> Calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.

## Installation

```bash
npm install @stdlib/blas-ext-base-gnansumkbn
```

Alternatively,

- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

## Usage

```javascript
var gnansumkbn = require( '@stdlib/blas-ext-base-gnansumkbn' );
```

#### gnansumkbn( N, x, stride )

Computes the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.

```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;

var v = gnansumkbn( N, x, 1 );
// returns 1.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
- **stride**: index increment for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the sum of every other element in `x`,

```javascript
var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var N = floor( x.length / 2 );

var v = gnansumkbn( N, x, 2 );
// returns 5.0
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = gnansumkbn( N, x1, 2 );
// returns 5.0
```

#### gnansumkbn.ndarray( N, x, stride, offset )

Computes the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm and alternative indexing semantics.

```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;

var v = gnansumkbn.ndarray( N, x, 1, 0 );
// returns 1.0
```

The function has the following additional parameters:

- **offset**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value

```javascript
var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var N = floor( x.length / 2 );

var v = gnansumkbn.ndarray( N, x, 2, 1 );
// returns 5.0
```

## Notes

- If `N <= 0`, both functions return `0.0`.
- Depending on the environment, the typed versions ([`dnansumkbn`][@stdlib/blas/ext/base/dnansumkbn], [`snansumkbn`][@stdlib/blas/ext/base/snansumkbn], etc.) are likely to be significantly more performant.

## Examples

```javascript
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var gnansumkbn = require( '@stdlib/blas-ext-base-gnansumkbn' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu()*100.0 );
}
}
console.log( x );

var v = gnansumkbn( x.length, x, 1 );
console.log( v );
```

* * *

## References

- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106][@neumaier:1974a].

* * *

## See Also

- [`@stdlib/blas-ext/base/dnansumkbn`][@stdlib/blas/ext/base/dnansumkbn]: calculate the sum of double-precision floating-point strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.
- [`@stdlib/blas-ext/base/gnansum`][@stdlib/blas/ext/base/gnansum]: calculate the sum of strided array elements, ignoring NaN values.
- [`@stdlib/blas-ext/base/gnansumkbn2`][@stdlib/blas/ext/base/gnansumkbn2]: calculate the sum of strided array elements, ignoring NaN values and using a second-order iterative Kahan–Babuška algorithm.
- [`@stdlib/blas-ext/base/gnansumors`][@stdlib/blas/ext/base/gnansumors]: calculate the sum of strided array elements, ignoring NaN values and using ordinary recursive summation.
- [`@stdlib/blas-ext/base/gnansumpw`][@stdlib/blas/ext/base/gnansumpw]: calculate the sum of strided array elements, ignoring NaN values and using pairwise summation.
- [`@stdlib/blas-ext/base/gsumkbn`][@stdlib/blas/ext/base/gsumkbn]: calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.
- [`@stdlib/blas-ext/base/snansumkbn`][@stdlib/blas/ext/base/snansumkbn]: calculate the sum of single-precision floating-point strided array elements, ignoring NaN values and using an improved Kahan–Babuška algorithm.

* * *

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

---

## License

See [LICENSE][stdlib-license].

## Copyright

Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].

[npm-image]: http://img.shields.io/npm/v/@stdlib/blas-ext-base-gnansumkbn.svg
[npm-url]: https://npmjs.org/package/@stdlib/blas-ext-base-gnansumkbn

[test-image]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/actions/workflows/test.yml?query=branch:main

[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-ext-base-gnansumkbn/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/blas-ext-base-gnansumkbn?branch=main

[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im

[stdlib]: https://github.com/stdlib-js/stdlib

[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors

[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

[deno-url]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/tree/deno
[deno-readme]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/tree/umd
[umd-readme]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/tree/esm
[esm-readme]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn/blob/main/branches.md

[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/blas-ext-base-gnansumkbn/main/LICENSE

[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray

[@neumaier:1974a]: https://doi.org/10.1002/zamm.19740540106

[@stdlib/blas/ext/base/dnansumkbn]: https://github.com/stdlib-js/blas-ext-base-dnansumkbn

[@stdlib/blas/ext/base/snansumkbn]: https://github.com/stdlib-js/blas-ext-base-snansumkbn

[@stdlib/blas/ext/base/gnansum]: https://github.com/stdlib-js/blas-ext-base-gnansum

[@stdlib/blas/ext/base/gnansumkbn2]: https://github.com/stdlib-js/blas-ext-base-gnansumkbn2

[@stdlib/blas/ext/base/gnansumors]: https://github.com/stdlib-js/blas-ext-base-gnansumors

[@stdlib/blas/ext/base/gnansumpw]: https://github.com/stdlib-js/blas-ext-base-gnansumpw

[@stdlib/blas/ext/base/gsumkbn]: https://github.com/stdlib-js/blas-ext-base-gsumkbn