https://github.com/stdlib-js/stats-base-dists-binomial-logpmf
Natural logarithm of the probability mass function (PMF) for a binomial distribution.
https://github.com/stdlib-js/stats-base-dists-binomial-logpmf
bernoulli binom binomial coin-flip dist distribution failure javascript logpmf node node-js nodejs pmf prob probability statistics stats stdlib success trials
Last synced: about 5 hours ago
JSON representation
Natural logarithm of the probability mass function (PMF) for a binomial distribution.
- Host: GitHub
- URL: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-15T17:32:51.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2025-09-07T16:12:26.000Z (29 days ago)
- Last Synced: 2025-09-26T05:59:55.651Z (11 days ago)
- Topics: bernoulli, binom, binomial, coin-flip, dist, distribution, failure, javascript, logpmf, node, node-js, nodejs, pmf, prob, probability, statistics, stats, stdlib, success, trials
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 1.29 MB
- Stars: 1
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
- Notice: NOTICE
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# Logarithm of Probability Mass Function
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Evaluate the natural logarithm of the probability mass function (PMF) for a [binomial][binomial-distribution] distribution.
The [probability mass function][pmf] (PMF) for a [binomial][binomial-distribution] random variable is
```math
f(x;n,p)=P(X=x;n,p)=\begin{cases} \textstyle {n \choose x}\, p^x (1-p)^{n-x} & \text{ for } x = 0,1,2,\ldots \\ 0 & \text{ otherwise} \end{cases}
```where `n` is the number of trials and `0 <= p <= 1` is the success probability.
## Installation
```bash
npm install @stdlib/stats-base-dists-binomial-logpmf
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var logpmf = require( '@stdlib/stats-base-dists-binomial-logpmf' );
```#### logpmf( x, n, p )
Evaluates the natural logarithm of the [probability mass function][pmf] (PMF) for a [binomial][binomial-distribution] distribution with number of trials `n` and success probability `p`.
```javascript
var y = logpmf( 3.0, 20, 0.2 );
// returns ~-1.583y = logpmf( 21.0, 20, 0.2 );
// returns -Infinityy = logpmf( 5.0, 10, 0.4 );
// returns ~-1.606y = logpmf( 0.0, 10, 0.4 );
// returns ~-5.108
```If provided `NaN` as any argument, the function returns `NaN`.
```javascript
var y = logpmf( NaN, 20, 0.5 );
// returns NaNy = logpmf( 0.0, NaN, 0.5 );
// returns NaNy = logpmf( 0.0, 20, NaN );
// returns NaN
```If provided a number of trials `n` which is not a nonnegative integer, the function returns `NaN`.
```javascript
var y = logpmf( 2.0, 1.5, 0.5 );
// returns NaNy = logpmf( 2.0, -2.0, 0.5 );
// returns NaN
```If provided a success probability `p` outside of `[0,1]`, the function returns `NaN`.
```javascript
var y = logpmf( 2.0, 20, -1.0 );
// returns NaNy = logpmf( 2.0, 20, 1.5 );
// returns NaN
```#### logpmf.factory( n, p )
Returns a function for evaluating the [probability mass function][pmf] (PMF) of a [binomial][binomial-distribution] distribution with number of trials `n` and success probability `p`.
```javascript
var mylogpmf = logpmf.factory( 10, 0.5 );var y = mylogpmf( 3.0 );
// returns ~-2.144y = mylogpmf( 5.0 );
// returns ~-1.402
```## Examples
```javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var logpmf = require( '@stdlib/stats-base-dists-binomial-logpmf' );var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 20, opts );
var n = discreteUniform( 10, 0, 100, opts );
var p = uniform( 10, 0.0, 1.0, opts );logEachMap( 'x: %0.4f, n: %0.4f, p: %0.4f, ln(P(X = x;n,p)): %0.4f', x, n, p, logpmf );
```* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-binomial-logpmf.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-binomial-logpmf[test-image]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-binomial-logpmf/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-binomial-logpmf?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-binomial-logpmf/blob/main/branches.md[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-binomial-logpmf/main/LICENSE
[binomial-distribution]: https://en.wikipedia.org/wiki/Binomial_distribution
[pmf]: https://en.wikipedia.org/wiki/Probability_mass_function