Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf
Natural logarithm of the probability mass function (PMF) for a discrete uniform distribution.
https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf
discrete dist distribution javascript ln log logarithm logpmf natural node node-js nodejs pmf probability statistics stats stdlib symmetric uniform univariate
Last synced: 18 days ago
JSON representation
Natural logarithm of the probability mass function (PMF) for a discrete uniform distribution.
- Host: GitHub
- URL: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-15T16:58:01.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-01T07:35:04.000Z (about 1 month ago)
- Last Synced: 2024-10-04T22:17:13.310Z (about 1 month ago)
- Topics: discrete, dist, distribution, javascript, ln, log, logarithm, logpmf, natural, node, node-js, nodejs, pmf, probability, statistics, stats, stdlib, symmetric, uniform, univariate
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 676 KB
- Stars: 1
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# Logarithm of Probability Mass Function
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Evaluate the natural logarithm of the [probability mass function][pmf] (PMF) for a [discrete uniform][discrete-uniform-distribution] distribution.
The [probability mass function][pmf] (PMF) for a [discrete uniform][discrete-uniform-distribution] random variable is
```math
P(X=x;a,b)=\begin{cases} \frac{1}{b - a + 1} & \text{for } x \in \{ a, \ldots, b \} \\ 0 & \text{otherwise} \end{cases}
```where `a` is the minimum support and `b` is the maximum support of the distribution. The parameters must satisfy `a <= b`.
## Installation
```bash
npm install @stdlib/stats-base-dists-discrete-uniform-logpmf
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var logpmf = require( '@stdlib/stats-base-dists-discrete-uniform-logpmf' );
```#### logpmf( x, a, b )
Evaluates the natural logarithm of the [probability mass function][pmf] (PMF) for a [discrete uniform][discrete-uniform-distribution] distribution with parameters `a` (minimum support) and `b` (maximum support).
```javascript
var y = logpmf( 2.0, 0, 4 );
// returns ~-1.609y = logpmf( 5.0, 0, 4 );
// returns -Infinityy = logpmf( 3, -4, 4 );
// returns ~-2.197
```If provided `NaN` as any argument, the function returns `NaN`.
```javascript
var y = logpmf( NaN, -2, 2 );
// returns NaNy = logpmf( 1.0, NaN, 4 );
// returns NaNy = logpmf( 2.0, 0, NaN );
// returns NaN
```If `a` or `b` is not an integer value, the function returns `NaN`.
```javascript
var y = logpmf( 2.0, 1, 5.5 );
// returns NaN
```If provided `a > b`, the function returns `NaN`.
```javascript
var y = logpmf( 2.0, 3, 2 );
// returns NaN
```#### logpmf.factory( a, b )
Returns a `function` for evaluating the [PMF][pmf] for a [discrete uniform][discrete-uniform-distribution] distribution with parameters `a` (minimum support) and `b` (maximum support).
```javascript
var myLogPMF = logpmf.factory( 6, 7 );
var y = myLogPMF( 7.0 );
// returns ~-0.693y = myLogPMF( 5.0 );
// returns -Infinity
```## Examples
```javascript
var randint = require( '@stdlib/random-base-discrete-uniform' );
var logpmf = require( '@stdlib/stats-base-dists-discrete-uniform-logpmf' );var randa = randint.factory( 0, 10 );
var randb = randint.factory();
var a;
var b;
var x;
var y;
var i;for ( i = 0; i < 25; i++ ) {
a = randa();
x = randb( a, a+randa() );
b = randb( a, a+randa() );
y = logpmf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, ln(P(X=x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}
```* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-discrete-uniform-logpmf.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-discrete-uniform-logpmf[test-image]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-discrete-uniform-logpmf/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-discrete-uniform-logpmf?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-discrete-uniform-logpmf/blob/main/branches.md[pmf]: https://en.wikipedia.org/wiki/Probability_mass_function
[discrete-uniform-distribution]: https://en.wikipedia.org/wiki/Discrete_uniform_distribution