An open API service indexing awesome lists of open source software.

https://github.com/stdlib-js/stats-base-dists-frechet-mean

Fréchet distribution expected value.
https://github.com/stdlib-js/stats-base-dists-frechet-mean

average avg center continuous dist distribution expectation extreme frechet inverse javascript location mean node node-js nodejs statistics stats stdlib weibull

Last synced: 3 months ago
JSON representation

Fréchet distribution expected value.

Awesome Lists containing this project

README

          


About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# Mean

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

> [Fréchet][frechet-distribution] distribution [expected value][mean].

The [expected value][mean] for a [Fréchet][frechet-distribution] random variable shape `α > 0`, scale `s > 0`, and location parameter `m` is

```math
\mathbb{E}\left[ X \right] = \begin{cases}\ m+s\Gamma\left(1-{\frac{1}{\alpha}}\right) & {\text{ for }}\alpha >1\\\ \infty & {\text{ otherwise }}\end{cases}
```

where `Γ` is the [gamma function][gamma-function].

## Installation

```bash
npm install @stdlib/stats-base-dists-frechet-mean
```

Alternatively,

- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

## Usage

```javascript
var mean = require( '@stdlib/stats-base-dists-frechet-mean' );
```

#### mean( alpha, s, m )

Returns the [expected value][mean] for a [Fréchet][frechet-distribution] distribution with shape `alpha > 0`, scale `s > 0`, and location parameter `m`.

```javascript
var y = mean( 2.0, 1.0, 1.0 );
// returns ~2.772

y = mean( 4.0, 4.0, -1.0 );
// returns ~3.902

y = mean( 1.0, 1.0, 2.0 );
// returns Infinity
```

If provided `NaN` as any argument, the function returns `NaN`.

```javascript
var y = mean( NaN, 1.0, -2.0 );
// returns NaN

y = mean( 1.0, NaN, -2.0 );
// returns NaN

y = mean( 1.0, 1.0, NaN );
// returns NaN
```

If provided `alpha <= 0`, the function returns `NaN`.

```javascript
var y = mean( 0.0, 3.0, 2.0 );
// returns NaN

y = mean( 0.0, -1.0, 2.0 );
// returns NaN
```

If provided `s <= 0`, the function returns `NaN`.

```javascript
var y = mean( 1.0, 0.0, 2.0 );
// returns NaN

y = mean( 1.0, -1.0, 2.0 );
// returns NaN
```

## Examples

```javascript
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mean = require( '@stdlib/stats-base-dists-frechet-mean' );

var alpha;
var m;
var s;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
alpha = ( randu()*20.0 ) + EPS;
s = ( randu()*20.0 ) + EPS;
m = ( randu()*40.0 ) - 20.0;
y = mean( alpha, s, m );
console.log( 'α: %d, s: %d, m: %d, E(X;α,s,m): %d', alpha.toFixed( 4 ), s.toFixed( 4 ), m.toFixed( 4 ), y.toFixed( 4 ) );
}
```

* * *

## C APIs

### Usage

```c
#include "stdlib/stats/base/dists/frechet/mean.h"
```

#### stdlib_base_dists_frechet_mean( alpha, s, m )

Evaluates the [expected value][mean] for a [Fréchet][frechet-distribution] distribution with shape `alpha > 0`, scale `s > 0`, and location parameter `m`.

```c
double out = stdlib_base_dists_frechet_mean( 5.0, 2.0, 0.0 );
// returns ~2.328
```

The function accepts the following arguments:

- **alpha**: `[in] double` shape parameter.
- **s**: `[in] double` scale parameter.
- **m**: `[in] double` location parameter.

```c
double stdlib_base_dists_frechet_mean( const double alpha, const double s, const double m );
```

### Examples

```c
#include "stdlib/stats/base/dists/frechet/mean.h"
#include "stdlib/constants/float64/eps.h"
#include
#include

static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}

int main( void ) {
double alpha;
double s;
double m;
double y;
int i;

for ( i = 0; i < 25; i++ ) {
alpha = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 20.0 );
s = random_uniform( STDLIB_CONSTANT_FLOAT64_EPS, 20.0 );
m = random_uniform( -20.0, 20.0 );
y = stdlib_base_dists_frechet_mean( alpha, s, m );
printf( "α: %lf, s: %lf, m: %lf, E(X;α,s,m): %lf\n", alpha, s, m, y );
}
}
```

* * *

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

---

## License

See [LICENSE][stdlib-license].

## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-frechet-mean.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-frechet-mean

[test-image]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/actions/workflows/test.yml?query=branch:main

[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-frechet-mean/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-frechet-mean?branch=main

[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im

[stdlib]: https://github.com/stdlib-js/stdlib

[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors

[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

[deno-url]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-frechet-mean/blob/main/branches.md

[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-frechet-mean/main/LICENSE

[frechet-distribution]: https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution

[gamma-function]: https://en.wikipedia.org/wiki/Gamma_function

[mean]: https://en.wikipedia.org/wiki/Expected_value