Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stdlib-js/stats-incr-pcorrdistmat
Compute a sample Pearson product-moment correlation distance matrix incrementally.
https://github.com/stdlib-js/stats-incr-pcorrdistmat
anticorrelation corr correlated correlation covariance dist distance javascript math mathematics matrix node node-js nodejs pearson product-moment sample-covariance statistics stats stdlib
Last synced: 3 days ago
JSON representation
Compute a sample Pearson product-moment correlation distance matrix incrementally.
- Host: GitHub
- URL: https://github.com/stdlib-js/stats-incr-pcorrdistmat
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-15T19:02:06.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-08-01T13:27:16.000Z (4 months ago)
- Last Synced: 2024-10-02T08:36:56.333Z (about 1 month ago)
- Topics: anticorrelation, corr, correlated, correlation, covariance, dist, distance, javascript, math, mathematics, matrix, node, node-js, nodejs, pearson, product-moment, sample-covariance, statistics, stats, stdlib
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 2.44 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# incrpcorrdistmat
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Compute a [sample Pearson product-moment correlation distance matrix][pearson-correlation] incrementally.
A [sample Pearson product-moment correlation distance matrix][pearson-correlation] is an M-by-M matrix whose elements specified by indices `j` and `k` are the [sample Pearson product-moment correlation distances][pearson-correlation] between the jth and kth data variables. The [sample Pearson product-moment correlation distance][pearson-correlation] is defined as
```math
d_{x,y} = 1 - r_{x,y} = 1 - \frac{\mathop{\mathrm{cov_n(x,y)}}}{\sigma_x \sigma_y}
```where `r` is the [sample Pearson product-moment correlation coefficient][pearson-correlation], `cov(x,y)` is the sample covariance, and `σ` corresponds to the sample standard deviation. As `r` resides on the interval `[-1,1]`, `d` resides on the interval `[0,2]`.
## Installation
```bash
npm install @stdlib/stats-incr-pcorrdistmat
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var incrpcorrdistmat = require( '@stdlib/stats-incr-pcorrdistmat' );
```#### incrpcorrdistmat( out\[, means] )
Returns an accumulator `function` which incrementally computes a [sample Pearson product-moment correlation distance matrix][pearson-correlation].
```javascript
// Create an accumulator for computing a 2-dimensional correlation distance matrix:
var accumulator = incrpcorrdistmat( 2 );
```The `out` argument may be either the order of the [correlation distance matrix][pearson-correlation] or a square 2-dimensional [`ndarray`][@stdlib/ndarray/ctor] for storing the [correlation distance matrix][pearson-correlation].
```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];// Create a 2-dimensional output correlation distance matrix:
var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );var accumulator = incrpcorrdistmat( dist );
```When means are known, the function supports providing a 1-dimensional [`ndarray`][@stdlib/ndarray/ctor] containing mean values.
```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
means.set( 0, 3.0 );
means.set( 1, -5.5 );var accumulator = incrpcorrdistmat( 2, means );
```#### accumulator( \[vector] )
If provided a data vector, the accumulator function returns an updated [sample Pearson product-moment distance correlation matrix][pearson-correlation]. If not provided a data vector, the accumulator function returns the current [sample Pearson product-moment correlation distance matrix][pearson-correlation].
```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];
var dist = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );buffer = new Float64Array( 2 );
shape = [ 2 ];
strides = [ 1 ];
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );var accumulator = incrpcorrdistmat( dist );
vec.set( 0, 2.0 );
vec.set( 1, 1.0 );var out = accumulator( vec );
// returnsvar bool = ( out === dist );
// returns truevec.set( 0, 1.0 );
vec.set( 1, -5.0 );out = accumulator( vec );
// returnsvec.set( 0, 3.0 );
vec.set( 1, 3.14 );out = accumulator( vec );
// returnsout = accumulator();
// returns
```## Notes
- Due to limitations inherent in representing numeric values using floating-point format (i.e., the inability to represent numeric values with infinite precision), the [correlation distance][pearson-correlation] between perfectly correlated random variables may **not** be `0` or `2`. In fact, the [correlation distance][pearson-correlation] is **not** guaranteed to be strictly on the interval `[0,2]`. Any computed distance should, however, be within floating-point roundoff error.
## Examples
```javascript
var randu = require( '@stdlib/random-base-randu' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var Float64Array = require( '@stdlib/array-float64' );
var incrpcorrdistmat = require( '@stdlib/stats-incr-pcorrdistmat' );var dist;
var dxy;
var dyx;
var dx;
var dy;
var i;// Initialize an accumulator for a 2-dimensional correlation distance matrix:
var accumulator = incrpcorrdistmat( 2 );// Create a 1-dimensional data vector:
var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
// For each simulated data vector, update the sample correlation distance matrix...
for ( i = 0; i < 100; i++ ) {
vec.set( 0, randu()*100.0 );
vec.set( 1, randu()*100.0 );
dist = accumulator( vec );dx = dist.get( 0, 0 ).toFixed( 4 );
dy = dist.get( 1, 1 ).toFixed( 4 );
dxy = dist.get( 0, 1 ).toFixed( 4 );
dyx = dist.get( 1, 0 ).toFixed( 4 );console.log( '[ %d, %d\n %d, %d ]', dx, dxy, dyx, dy );
}
```* * *
## See Also
- [`@stdlib/stats-incr/pcorrdist`][@stdlib/stats/incr/pcorrdist]: compute a sample Pearson product-moment correlation distance.
- [`@stdlib/stats-incr/pcorrmat`][@stdlib/stats/incr/pcorrmat]: compute a sample Pearson product-moment correlation matrix incrementally.* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-incr-pcorrdistmat.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-incr-pcorrdistmat[test-image]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-incr-pcorrdistmat/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-incr-pcorrdistmat?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-incr-pcorrdistmat/blob/main/branches.md[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-incr-pcorrdistmat/main/LICENSE
[pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
[@stdlib/ndarray/ctor]: https://github.com/stdlib-js/ndarray-ctor
[@stdlib/stats/incr/pcorrdist]: https://github.com/stdlib-js/stats-incr-pcorrdist
[@stdlib/stats/incr/pcorrmat]: https://github.com/stdlib-js/stats-incr-pcorrmat