An open API service indexing awesome lists of open source software.

https://github.com/stdlib-js/stats-incr-pcorrmat

Compute a sample Pearson product-moment correlation matrix incrementally.
https://github.com/stdlib-js/stats-incr-pcorrmat

anticorrelation correlated correlation covariance dispersion javascript math mathematics matrix node node-js nodejs sample-covariance standard-deviation statistics stats stdlib unbiased var variance

Last synced: 5 months ago
JSON representation

Compute a sample Pearson product-moment correlation matrix incrementally.

Awesome Lists containing this project

README

          


About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.


The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.


When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.


To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# incrpcorrmat

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

> Compute a [sample Pearson product-moment correlation matrix][pearson-correlation] incrementally.

A [Pearson product-moment correlation matrix][pearson-correlation] is an M-by-M matrix whose elements specified by indices `j` and `k` are the [Pearson product-moment correlation coefficients][pearson-correlation] between the jth and kth data variables. The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as

```math
\rho_{X,Y} = \frac{\mathop{\mathrm{cov}}(X,Y)}{\sigma_X \sigma_Y}
```

where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.

For a sample of size `n`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as

```math
r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}
```

## Installation

```bash
npm install @stdlib/stats-incr-pcorrmat
```

Alternatively,

- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).

The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

## Usage

```javascript
var incrpcorrmat = require( '@stdlib/stats-incr-pcorrmat' );
```

#### incrpcorrmat( out\[, means] )

Returns an accumulator `function` which incrementally computes a [sample Pearson product-moment correlation matrix][pearson-correlation].

```javascript
// Create an accumulator for computing a 2-dimensional correlation matrix:
var accumulator = incrpcorrmat( 2 );
```

The `out` argument may be either the order of the [correlation matrix][pearson-correlation] or a square 2-dimensional [`ndarray`][@stdlib/ndarray/ctor] for storing the [correlation matrix][pearson-correlation].

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );

var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];

// Create a 2-dimensional output correlation matrix:
var corr = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );

var accumulator = incrpcorrmat( corr );
```

When means are known, the function supports providing a 1-dimensional [`ndarray`][@stdlib/ndarray/ctor] containing mean values.

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );

var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];

var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );

means.set( 0, 3.0 );
means.set( 1, -5.5 );

var accumulator = incrpcorrmat( 2, means );
```

#### accumulator( \[vector] )

If provided a data vector, the accumulator function returns an updated [sample Pearson product-moment correlation matrix][pearson-correlation]. If not provided a data vector, the accumulator function returns the current [sample Pearson product-moment correlation matrix][pearson-correlation].

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var ndarray = require( '@stdlib/ndarray-ctor' );

var buffer = new Float64Array( 4 );
var shape = [ 2, 2 ];
var strides = [ 2, 1 ];
var corr = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );

buffer = new Float64Array( 2 );
shape = [ 2 ];
strides = [ 1 ];
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );

var accumulator = incrpcorrmat( corr );

vec.set( 0, 2.0 );
vec.set( 1, 1.0 );

var out = accumulator( vec );
// returns

var bool = ( out === corr );
// returns true

vec.set( 0, 1.0 );
vec.set( 1, -5.0 );

out = accumulator( vec );
// returns

vec.set( 0, 3.0 );
vec.set( 1, 3.14 );

out = accumulator( vec );
// returns

out = accumulator();
// returns
```

## Examples

```javascript
var randu = require( '@stdlib/random-base-randu' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var Float64Array = require( '@stdlib/array-float64' );
var incrpcorrmat = require( '@stdlib/stats-incr-pcorrmat' );

var corr;
var rxy;
var ryx;
var rx;
var ry;
var i;

// Initialize an accumulator for a 2-dimensional correlation matrix:
var accumulator = incrpcorrmat( 2 );

// Create a 1-dimensional data vector:
var buffer = new Float64Array( 2 );
var shape = [ 2 ];
var strides = [ 1 ];

var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );

// For each simulated data vector, update the sample correlation matrix...
for ( i = 0; i < 100; i++ ) {
vec.set( 0, randu()*100.0 );
vec.set( 1, randu()*100.0 );
corr = accumulator( vec );

rx = corr.get( 0, 0 ).toFixed( 4 );
ry = corr.get( 1, 1 ).toFixed( 4 );
rxy = corr.get( 0, 1 ).toFixed( 4 );
ryx = corr.get( 1, 0 ).toFixed( 4 );

console.log( '[ %d, %d\n %d, %d ]', rx, rxy, ryx, ry );
}
```

* * *

## See Also

- [`@stdlib/stats-incr/covmat`][@stdlib/stats/incr/covmat]: compute an unbiased sample covariance matrix incrementally.
- [`@stdlib/stats-incr/pcorr`][@stdlib/stats/incr/pcorr]: compute a sample Pearson product-moment correlation coefficient.
- [`@stdlib/stats-incr/pcorrdistmat`][@stdlib/stats/incr/pcorrdistmat]: compute a sample Pearson product-moment correlation distance matrix incrementally.

* * *

## Notice

This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].

#### Community

[![Chat][chat-image]][chat-url]

---

## License

See [LICENSE][stdlib-license].

## Copyright

Copyright © 2016-2025. The Stdlib [Authors][stdlib-authors].

[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-incr-pcorrmat.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-incr-pcorrmat

[test-image]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml?query=branch:main

[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-incr-pcorrmat/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-incr-pcorrmat?branch=main

[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im

[stdlib]: https://github.com/stdlib-js/stdlib

[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors

[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

[deno-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/main/branches.md

[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-incr-pcorrmat/main/LICENSE

[pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

[covariance]: https://en.wikipedia.org/wiki/Covariance

[@stdlib/ndarray/ctor]: https://github.com/stdlib-js/ndarray-ctor

[@stdlib/stats/incr/covmat]: https://github.com/stdlib-js/stats-incr-covmat

[@stdlib/stats/incr/pcorr]: https://github.com/stdlib-js/stats-incr-pcorr

[@stdlib/stats/incr/pcorrdistmat]: https://github.com/stdlib-js/stats-incr-pcorrdistmat