Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stdlib-js/stats-incr-summary
Compute a statistical summary incrementally.
https://github.com/stdlib-js/stats-incr-summary
accumulator incremental javascript math mathematics node node-js nodejs statistics stats stdlib summary
Last synced: about 14 hours ago
JSON representation
Compute a statistical summary incrementally.
- Host: GitHub
- URL: https://github.com/stdlib-js/stats-incr-summary
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-15T17:12:12.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-01T10:52:36.000Z (about 2 months ago)
- Last Synced: 2024-10-02T20:17:35.523Z (about 2 months ago)
- Topics: accumulator, incremental, javascript, math, mathematics, node, node-js, nodejs, statistics, stats, stdlib, summary
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 1.12 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# incrsummary
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Compute a statistical summary incrementally.
## Installation
```bash
npm install @stdlib/stats-incr-summary
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var incrsummary = require( '@stdlib/stats-incr-summary' );
```#### incrsummary()
Returns an accumulator `function` which incrementally computes a statistical summary.
```javascript
var accumulator = incrsummary();
```#### accumulator( \[x] )
If provided an input value `x`, the accumulator function returns an updated summary. If not provided an input value `x`, the accumulator function returns the current summary.
```javascript
var accumulator = incrsummary();var summary = accumulator();
// returns {}summary = accumulator( 2.0 );
/* returns
{
'count': 1,
'max': 2.0,
'min': 2.0,
'range': 0.0,
'midrange': 2.0,
'sum': 2.0,
'mean': 2.0,
'variance': 0.0,
'stdev': 0.0,
'skewness': null,
'kurtosis': null
}
*/summary = accumulator( 1.0 );
/* returns
{
'count': 2,
'max': 2.0,
'min': 1.0,
'range': 1.0,
'midrange': 1.5,
'sum': 3.0,
'mean': 1.5,
'variance': 0.5,
'stdev': 0.7071067811865476,
'skewness': null,
'kurtosis': null
}
*/summary = accumulator( -3.0 );
/* returns
{
'count': 3,
'max': 2.0,
'min': -3.0,
'range': 5.0,
'midrange': -0.5,
'sum': 0.0,
'mean': 0.0,
'variance': 7,
'stdev': ~2.65,
'skewness': ~-1.46,
'kurtosis': null
}
*/summary = accumulator();
/* returns
{
'count': 3,
'max': 2.0,
'min': -3.0,
'range': 5.0,
'midrange': -0.5,
'sum': 0.0,
'mean': 0.0,
'variance': 7,
'stdev': ~2.65,
'skewness': ~-1.46,
'kurtosis': null
}
*/
```## Notes
- Input values are **not** type checked. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
- For long running accumulations or accumulations of large numbers, care should be taken to prevent overflow.## Examples
```javascript
var randu = require( '@stdlib/random-base-randu' );
var incrsummary = require( '@stdlib/stats-incr-summary' );var accumulator;
var v;
var i;// Initialize an accumulator:
accumulator = incrsummary();// For each simulated datum, update the summary...
for ( i = 0; i < 100; i++ ) {
v = randu() * 100.0;
accumulator( v );
}
console.log( accumulator() );
```* * *
## See Also
- [`@stdlib/stats-incr/count`][@stdlib/stats/incr/count]: compute a count incrementally.
- [`@stdlib/stats-incr/kurtosis`][@stdlib/stats/incr/kurtosis]: compute a corrected sample excess kurtosis incrementally.
- [`@stdlib/stats-incr/max`][@stdlib/stats/incr/max]: compute a maximum value incrementally.
- [`@stdlib/stats-incr/mean`][@stdlib/stats/incr/mean]: compute an arithmetic mean incrementally.
- [`@stdlib/stats-incr/midrange`][@stdlib/stats/incr/midrange]: compute a mid-range incrementally.
- [`@stdlib/stats-incr/min`][@stdlib/stats/incr/min]: compute a minimum value incrementally.
- [`@stdlib/stats-incr/msummary`][@stdlib/stats/incr/msummary]: compute a moving statistical summary incrementally.
- [`@stdlib/stats-incr/range`][@stdlib/stats/incr/range]: compute a range incrementally.
- [`@stdlib/stats-incr/skewness`][@stdlib/stats/incr/skewness]: compute a corrected sample skewness incrementally.
- [`@stdlib/stats-incr/stdev`][@stdlib/stats/incr/stdev]: compute a corrected sample standard deviation incrementally.
- [`@stdlib/stats-incr/sum`][@stdlib/stats/incr/sum]: compute a sum incrementally.
- [`@stdlib/stats-incr/variance`][@stdlib/stats/incr/variance]: compute an unbiased sample variance incrementally.* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-incr-summary.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-incr-summary[test-image]: https://github.com/stdlib-js/stats-incr-summary/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-incr-summary/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-incr-summary/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-incr-summary?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/stats-incr-summary/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-incr-summary/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-incr-summary/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-incr-summary/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-incr-summary/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-incr-summary/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-incr-summary/blob/main/branches.md[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-incr-summary/main/LICENSE
[@stdlib/stats/incr/count]: https://github.com/stdlib-js/stats-incr-count
[@stdlib/stats/incr/kurtosis]: https://github.com/stdlib-js/stats-incr-kurtosis
[@stdlib/stats/incr/max]: https://github.com/stdlib-js/stats-incr-max
[@stdlib/stats/incr/mean]: https://github.com/stdlib-js/stats-incr-mean
[@stdlib/stats/incr/midrange]: https://github.com/stdlib-js/stats-incr-midrange
[@stdlib/stats/incr/min]: https://github.com/stdlib-js/stats-incr-min
[@stdlib/stats/incr/msummary]: https://github.com/stdlib-js/stats-incr-msummary
[@stdlib/stats/incr/range]: https://github.com/stdlib-js/stats-incr-range
[@stdlib/stats/incr/skewness]: https://github.com/stdlib-js/stats-incr-skewness
[@stdlib/stats/incr/stdev]: https://github.com/stdlib-js/stats-incr-stdev
[@stdlib/stats/incr/sum]: https://github.com/stdlib-js/stats-incr-sum
[@stdlib/stats/incr/variance]: https://github.com/stdlib-js/stats-incr-variance