Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stdlib-js/stats-iter-cugmean
Create an iterator which iteratively computes a cumulative geometric mean.
https://github.com/stdlib-js/stats-iter-cugmean
accumulate average avg central-tendency cumulative cumulative-avg cumulative-mean geometric javascript math mathematics mean node node-js nodejs prod product statistics stats stdlib
Last synced: 3 months ago
JSON representation
Create an iterator which iteratively computes a cumulative geometric mean.
- Host: GitHub
- URL: https://github.com/stdlib-js/stats-iter-cugmean
- Owner: stdlib-js
- License: apache-2.0
- Created: 2021-06-15T17:20:53.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-01T11:20:52.000Z (4 months ago)
- Last Synced: 2024-10-28T07:31:58.746Z (3 months ago)
- Topics: accumulate, average, avg, central-tendency, cumulative, cumulative-avg, cumulative-mean, geometric, javascript, math, mathematics, mean, node, node-js, nodejs, prod, product, statistics, stats, stdlib
- Language: JavaScript
- Homepage: https://github.com/stdlib-js/stdlib
- Size: 1.21 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
README
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
# itercugmean
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Create an [iterator][mdn-iterator-protocol] which iteratively computes a cumulative [geometric mean][geometric-mean].
The [geometric mean][geometric-mean] is defined as the nth root of a product of _n_ numbers.
```math
\biggl( \prod_{i=0}^{n-1} \biggr)^{\frac{1}{n}} = \sqrt[n]{x_0 x_1 \cdots x_{n-1}}
```
## Installation
```bash
npm install @stdlib/stats-iter-cugmean
```Alternatively,
- To load the package in a website via a `script` tag without installation and bundlers, use the [ES Module][es-module] available on the [`esm`][esm-url] branch (see [README][esm-readme]).
- If you are using Deno, visit the [`deno`][deno-url] branch (see [README][deno-readme] for usage intructions).
- For use in Observable, or in browser/node environments, use the [Universal Module Definition (UMD)][umd] build available on the [`umd`][umd-url] branch (see [README][umd-readme]).The [branches.md][branches-url] file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
## Usage
```javascript
var itercugmean = require( '@stdlib/stats-iter-cugmean' );
```#### itercugmean( iterator )
Returns an [iterator][mdn-iterator-protocol] which iteratively computes a cumulative [geometric mean][geometric-mean].
```javascript
var array2iterator = require( '@stdlib/array-to-iterator' );var arr = array2iterator( [ 2.0, 1.0, 3.0, 7.0, 5.0 ] );
var it = itercugmean( arr );var v = it.next().value;
// returns 2.0v = it.next().value;
// returns ~1.41v = it.next().value;
// returns ~1.82v = it.next().value;
// returns ~2.55v = it.next().value;
// returns ~2.91
```## Notes
- If an iterated value is non-numeric (including `NaN`) or negative, the function returns `NaN` for **all** future iterations. If non-numeric and/or negative iterated values are possible, you are advised to provide an [`iterator`][mdn-iterator-protocol] which type checks and handles such values accordingly.
## Examples
```javascript
var runif = require( '@stdlib/random-iter-uniform' );
var itercugmean = require( '@stdlib/stats-iter-cugmean' );// Create an iterator for generating uniformly distributed pseudorandom numbers:
var rand = runif( 0.0, 10.0, {
'seed': 1234,
'iter': 100
});// Create an iterator for iteratively computing a cumulative geometric mean:
var it = itercugmean( rand );// Perform manual iteration...
var v;
while ( true ) {
v = it.next();
if ( typeof v.value === 'number' ) {
console.log( 'gmean: %d', v.value );
}
if ( v.done ) {
break;
}
}
```* * *
## See Also
- [`@stdlib/stats-iter/cuhmean`][@stdlib/stats/iter/cuhmean]: create an iterator which iteratively computes a cumulative harmonic mean.
- [`@stdlib/stats-iter/cumean`][@stdlib/stats/iter/cumean]: create an iterator which iteratively computes a cumulative arithmetic mean.* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-iter-cugmean.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-iter-cugmean[test-image]: https://github.com/stdlib-js/stats-iter-cugmean/actions/workflows/test.yml/badge.svg?branch=main
[test-url]: https://github.com/stdlib-js/stats-iter-cugmean/actions/workflows/test.yml?query=branch:main[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-iter-cugmean/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-iter-cugmean?branch=main[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules[deno-url]: https://github.com/stdlib-js/stats-iter-cugmean/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-iter-cugmean/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-iter-cugmean/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-iter-cugmean/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-iter-cugmean/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-iter-cugmean/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-iter-cugmean/blob/main/branches.md[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-iter-cugmean/main/LICENSE
[geometric-mean]: https://en.wikipedia.org/wiki/Geometric_mean
[mdn-iterator-protocol]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#The_iterator_protocol
[@stdlib/stats/iter/cuhmean]: https://github.com/stdlib-js/stats-iter-cuhmean
[@stdlib/stats/iter/cumean]: https://github.com/stdlib-js/stats-iter-cumean