Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/steidani/ConTrack

Contour Tracking of circulation anomalies (atmospheric blocking, cyclones and anticyclones) in weather and climate data
https://github.com/steidani/ConTrack

Last synced: 2 months ago
JSON representation

Contour Tracking of circulation anomalies (atmospheric blocking, cyclones and anticyclones) in weather and climate data

Awesome Lists containing this project

README

        

.. image:: docs/logo_contrack.png
:width: 100%
:align: center

###########################
ConTrack - Contour Tracking
###########################
==================================================================================
Spatial and temporal tracking of circulation anomalies in weather and climate data
==================================================================================

ConTrack is a Python package intended to simpify the process of automatically tracking and analyzing synoptic weather features (individual systems or long-term climatology) in weather and climate datasets. This feature-based tool is mostly used to track and characterize the life cycle of atmospheric blocking, but can also be used to identify other type of anomalous features, e.g., upper-level troughs and ridges (storm track). It is built on top of `xarray`_ and `scipy`_.

ConTrack is based on the atmospheric blocking index by `Schwierz et al. (2004) `_ (written in Fortran) developed at the `Institute for Atmospheric and Climate Science, ETH Zurich `_.

See also:

- `Scherrer et al. (2005) `_:
- `Croci-Maspoli et al. (2007) `_
- `Pfahl et al. (2015) `_
- `Woollings et al. (2018) `_
- `Steinfeld and Pfahl (2019) `_
- `Steinfeld et al. (2020) `_
- and used in many more atmospheric blocking studies...

The ERA-Interim global blocking climatology based on upper-level potential vorticity used in Steinfeld and Pfahl (2019) is publicly available via an ETH Zurich-based web server [`http://eraiclim.ethz.ch/ `_ , see `Sprenger et al. (2017) `_].

..
References
.. _xarray: https://xarray.pydata.org/en/stable/
.. _scipy: https://www.scipy.org/

============
Referencing
============

| Please cite **ConTrack** in your publication: *Steinfeld, D., 2020: ConTrack - Contour Tracking. GitHub, https://github.com/steidani/ConTrack*.
| In case you are using the PV blocking index, please also cite: *Schwierz, C., Croci-Maspoli, M., and Davies, H. C., 2004: Perspicacious indicators of atmospheric blocking, Geophys. Res. Lett., 31, 0094–8276, https://doi.org/10.1029/2003GL019341*.
|
| Be aware that this is a free scientific tool in continous development, then it may not be free of bugs. Please report any issue on the GitHub portal.

============
Installation
============

Using pip
---------

Ideally install it in a virtual environment (development version, master).

.. code-block::

pip install git+https://github.com/steidani/ConTrack

Make sure you have the required dependencies (for details see docs/environment.yml):

- xarray
- scipy
- pandas
- numpy
- netCDF4
- (for plotting on geographical maps: matplotlib and cartopy)
- (for parallel computing: dask)

Copy from Github repository
---------------------------

Copy/clone locally the latest version from ConTrack:

.. code-block::

git clone [email protected]:steidani/ConTrack.git /path/to/local/contrack
cd path/to/local/contrack

Prepare the conda environment:

.. code-block::

conda create -y -q -n contrack_dev python=3.8.5 pytest
conda env update -q -f docs/environment.yml -n contrack_dev

Install contrack in development mode in contrack_dev:

.. code-block::

conda activate contrack_dev
pip install -e .

Run the tests:

.. code-block::

python -m pytest

==========
Tutorial
==========

Example: Calculate Z500 blocking climatology
--------------------------------------------

.. code-block::

# import contrack module
from contrack import contrack

# initiate blocking instance
block = contrack()

# read ERA5 Z500 (geopotential at 500 hPa) daily global data from 19810101_00 to 20101231_00 with 1° spatial resolution)
# downloaded from https://cds.climate.copernicus.eu
block.read('data/era5_1981-2010_z_500.nc')
block
# Out[]: Xarray dataset with 10957 time steps.
# Available fields: z

# select only winter months January, February and December
block.ds = block.ds.sel(time=block.ds.time.dt.month.isin([1, 2, 12]))
# xarray.Dataset (and all its functions) can be accessed with block.ds

# calculate geopotential height
block.calculate_gph_from_gp(gp_name='z',
gp_unit='m**2 s**-2',
gph_name='z_height')

# Hint: Use block.set_up(...) to do consistency check and set (automatically or manually) names of dimension ('time', 'latitude', 'longitude')

# calculate Z500 anomaly (temporally smoothed with a 2 d running mean) with respect to the 31-day running mean (long-term: 30 years) climatology
block.calc_anom(variable='z_height',
smooth=2,
window=31,
groupby='dayofyear')
# Hint: Use 'clim=...' to point towards an existing climatological mean (useful for weather forecasts)
# output: variable 'anom'.

# Finally, track blocking anticyclones (>=150gmp, 50% overlap twosided, 5 timesteps persistence (here 5 days))
block.run_contrack(variable='anom',
threshold=160,
gorl='>=',
overlap=0.5,
persistence=5,
twosided=True)
# output: variable 'flag'. 440 blocking systems tracked. Each blocking system is identified by a unique flag/ID.
block
# Out[]: Xarray dataset with 2707 time steps.
# Available fields: z, z_height, anom, flag

# Hint: In case you want to use a more objective threshold, e.g., the 90th percentile of the Z500 anomaly winter distribution over 50°-80°N, do:
# threshold = block['anom'].sel(latitude=slice(80, 50)).quantile([0.90], dim='time').mean() # 177gmp

# save to disk
block['flag'].to_netcdf('data/flag.nc')

# plotting blocking frequency (in %) for winter over Northern Hemisphere
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

fig, ax = plt.subplots(figsize=(7, 5), subplot_kw={'projection': ccrs.NorthPolarStereo()})
(xr.where(block['flag']>1,1,0).sum(dim='time')/block.ntime*100).plot(levels=np.arange(2,18,2), cmap='Oranges', extend = 'max', transform=ccrs.PlateCarree())
(xr.where(block['flag']>1,1,0).sum(dim='time')/block.ntime*100).plot.contour(colors='grey', linewidths=0.8, levels=np.arange(2,18,2), transform=ccrs.PlateCarree())
ax.set_extent([-180, 180, 30, 90], crs=ccrs.PlateCarree()); ax.coastlines();
plt.show()

.. image:: docs/era5_blockingfreq_DJF.png
:width: 60%
:align: center

Example: Calculation of blocking characteristics for life cycle analysis
------------------------------------------------------------------------

Using the output 'flag' from block.run_contrack() to calculate blocking intensity, size, center of mass, age from genesis to lysis for each tracked feature.

.. code-block::

# flag = output of block.run_contrack(), variable = input variable to calculate intensity and center of mass
block_df = block.run_lifecycle(flag='flag', variable='anom')

# output is a pandas.DataFrame
print(block_df)
Flag Date Longitude Latitude Intensity Size
0 3 19810101_00 333 48 226.45 6490603.17
1 3 19810102_00 335 47 210.77 6466790.05
2 3 19810103_00 331 47 189.00 4169702.52
3 3 19810104_00 331 49 190.78 3289504.87
4 3 19810105_00 331 50 203.66 4231433.19
... ... ... ... ... ...
3832 6948 20101221_00 357 -53 206.02 5453454.76
3833 6948 20101222_00 0 -56 208.80 5205585.69
3834 6948 20101223_00 3 -56 190.23 6324017.70
3835 6948 20101224_00 3 -57 214.02 5141693.22
3836 6948 20101225_00 5 -55 211.33 7606108.76

# save result to disk
block_df.to_csv('data/block.csv', index=False)

# plotting blocking track (center of mass) and genesis
f, ax = plt.subplots(1, 1, figsize=(7,5), subplot_kw=dict(projection=ccrs.NorthPolarStereo()))
ax.set_extent([-180, 180, 30, 90], crs=ccrs.PlateCarree()); ax.coastlines()
ax.coastlines() # add coastlines

#need to split each blocking track due to longitude wrapping (jumping at map edge)
for bid in np.unique(np.asarray(block_df['Flag'])): #select blocking id
lons = np.asarray(block_df['Longitude'].iloc[np.where(block_df['Flag']==bid)])
lats = np.asarray(block_df['Latitude'].iloc[np.where(block_df['Flag']==bid)])

# cosmetic: sometimes there is a gap near map edge where track is split:
lons[lons >= 355] = 359.9
lons[lons <= 3] = 0.1
segment = np.vstack((lons,lats))

#move longitude into the map region and split if longitude jumps by more than "threshold"
lon0 = 0 #center of map
bleft = lon0-0.
bright = lon0+360
segment[0,segment[0]> bright] -= 360
segment[0,segment[0]< bleft] += 360
threshold = 180 # CHANGE HERE
isplit = np.nonzero(np.abs(np.diff(segment[0])) > threshold)[0]
subsegs = np.split(segment,isplit+1,axis=+1)

#plot the tracks
for seg in subsegs:
x,y = seg[0],seg[1]
ax.plot(x ,y,c = 'm',linewidth=1, transform=ccrs.PlateCarree())
#plot the starting points
ax.scatter(lons[0],lats[0],s=11,c='m', zorder=10, edgecolor='black', transform=ccrs.PlateCarree())

.. image:: docs/cesm_blocking_track.png
:width: 60%
:align: center

Blocking Detection Example with vertically-averaged Potential Vorticity (ERA5 3-hourly data)
---------------------------------------------------------

I often receive questions about parameter selection for blocking detection. Here's an example description using potential vorticity from 3-hourly ERA5 data:

"We identify blocks as persistent negative potential vorticity (PV) anomalies with the blocking detection method implemented by Steinfeld 2020 (https://github.com/steidani/ConTrack) and adapted from the original index by Schwierz et al. (2004). PV anomalies are calculated as deviations from a climatological 30-day running mean of the analyzed baseline period (1979–2020) and temporally smoothed with a 2-day running mean filter to remove higher-frequency components. The PV fields are vertically averaged between 500-150\,hPa. For each time step, we detect atmospheric blocking as 2-D areas below a variable PV intensity threshold defined as the 10$^{th}$ percentile of the PV anomaly distribution over 30$^{\circ}$-90$^{\circ}$N at each calendar day, which allows for seasonality in the intensity of blocks. To ensure quasi-stationarity and persistence, we applied an 85\,\% two-sided spatial overlap criterion between the closed contours of successive 3-hourly time steps for at least 5 days."

==========
What's New
==========

v0.4.1 (18.04.2021):
--------------------

- bugfix: how flag ID is tracked at periodic boundary.
- run_contrack(threshold): Threshold can now also be a xr.DataArray (1D) with time = 'dayofyear' to allow for variable threshold.

v0.3.0 (18.04.2021):
--------------------

- bugfix: see Issue calc_clim error.

v0.2.0 (19.10.2020):
--------------------

- first release on pypi
- calculate anomalies based on pre-defined climatology: ``calc_anom(clim=...)``.
- better handling of dimensions using ``set_up()`` function.
- twosided or forward overlap criterion: ``run_contrack(twosided=True)``.
- ``run_lifecycle()``: temporal evolution of intensity, spatial extent, center of mass and age from genesis to lysis for individual features.

v0.1.0 (20.04.2020):
--------------------

- Extended functionality: Calculate anomalies from daily or monthly or seasonal... (long-term) climatology with moving average window: ``calc_anom(groupby=..., window=...)``