Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stepankonev/waymo-motion-prediction-challenge-2022-multipath-plus-plus
Solution for Waymo Motion Prediction Challenge 2022. Our implementation of MultiPath++
https://github.com/stepankonev/waymo-motion-prediction-challenge-2022-multipath-plus-plus
autonomous-driving autonomous-vehicles cvpr2022 motion-prediction multipath pytorch sdc self-driving-car trajectory-prediction waymo-open-dataset workshop-autonomous-driving
Last synced: about 2 months ago
JSON representation
Solution for Waymo Motion Prediction Challenge 2022. Our implementation of MultiPath++
- Host: GitHub
- URL: https://github.com/stepankonev/waymo-motion-prediction-challenge-2022-multipath-plus-plus
- Owner: stepankonev
- License: other
- Created: 2022-06-05T14:42:52.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-04-22T20:05:00.000Z (over 1 year ago)
- Last Synced: 2024-08-01T03:42:53.116Z (5 months ago)
- Topics: autonomous-driving, autonomous-vehicles, cvpr2022, motion-prediction, multipath, pytorch, sdc, self-driving-car, trajectory-prediction, waymo-open-dataset, workshop-autonomous-driving
- Language: Python
- Homepage: https://arxiv.org/abs/2206.10041
- Size: 822 KB
- Stars: 364
- Watchers: 7
- Forks: 74
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Waymo motion prediction challenge 2022: 3rd place solution (May, 26)
## Our implementation of [MultiPath++](https://arxiv.org/abs/2111.14973)![](docs/architecture.png)
## General Info:
- 🏎️[**CVPR2022 Workshop on Autonomous Driving website**](https://cvpr2022.wad.vision)
- 📜[**Technical report**](https://arxiv.org/abs/2206.10041)
- 🥉[**Waymo Motion Prediction Challenge Website**](https://waymo.com/open/challenges/2022/motion-prediction/)
- [❗Refactored code for our prize-winnig solution for Waymo Motion Prediction Challenge 2021](https://github.com/stepankonev/MotionCNN-Waymo-Open-Motion-Dataset)## Team behind this solution:
Stepan Konev
- [[LinkedIn]](https://www.linkedin.com/in/stepan-konev/)
- [[Twitter]](https://twitter.com/konevsteven)
- [[Facebook]](https://www.facebook.com/stepan.konev.31)## Code Usage:
First we need to prepare data for training. The prerender script will convert the original data format into set of ```.npz``` files each containing the data for a single target agent. From ```code``` folder run
```
python3 prerender/prerender.py \
--data-path /path/to/original/data \
--output-path /output/path/to/prerendered/data \
--n-jobs 24 \
--n-shards 1 \
--shard-id 0 \
--config configs/prerender.yaml
```
Rendering is a memory consuming procedure so you may want to use ```n-shards > 1``` and running the script a few times using consecutive ```shard-id``` valuesOnce we have our data prepared we can run the training.
```
python3 train.py configs/final_RoP_Cov_Single.yaml
```If you find this work interesting please ⭐️star and share this repo.
## Citation
If you find this work useful please cite us
```
@misc{https://doi.org/10.48550/arxiv.2206.10041,
doi = {10.48550/ARXIV.2206.10041},
url = {https://arxiv.org/abs/2206.10041},
author = {Konev, Stepan},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {MPA: MultiPath++ Based Architecture for Motion Prediction},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}```