Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/steph1793/Pointer_Transformer_Generator

:scorpius::heavy_plus_sign::sagittarius::arrow_right::heavy_check_mark: Build a summarizer models combining transformers and pointing mechanism
https://github.com/steph1793/Pointer_Transformer_Generator

Last synced: about 1 month ago
JSON representation

:scorpius::heavy_plus_sign::sagittarius::arrow_right::heavy_check_mark: Build a summarizer models combining transformers and pointing mechanism

Awesome Lists containing this project

README

        

# Pointer_Transformer_Generator tensorflow 2.0.0

For the abstractive summarization task, I wanted to experiment the transformer model. I recreated a transformer model (thanks to tensorflow transformer tutorial) and added a pointer module (have a look at this paper for more informations on the pointer generator network : https://arxiv.org/abs/1704.04368 ).

PS : I will add very soon a section explaining the integration of the pointer module in the transformer

Please follow the next steps to launch the project :

## Step 1 : The data

### Option 1 : Download the data
Download the data (chunk files format : tfrecords)
https://drive.google.com/open?id=1uHrMWd7Pbs_-DCl0eeMxePbxgmSce5LO

### Option 2 : Download raw data and process it
Use this project :
https://github.com/steph1793/CNN-DailyMail-Bin-To-TFRecords

## Step 2 : launch the project :

**python main.py --max_enc_len=400 \

--max_dec_len=100 \

--batch_size=16 \

--vocab_size=50000 \

--num_layers=3 \

--model_depth=512 \

--num_heads=8 \

--dff=2048 \

--seed=123 \

--log_step_count_steps=1 \

--max_steps=230000 \

--mode=train \

--save_summary_steps=10000 \

--checkpoints_save_steps=10000 \

--model_dir=model_folder \

--data_dir=data_folder \

--vocab_path=vocab \
**

PS : Feel free to change some of the hyperparameters

python main.py --help , for more details on the hyperparameters

## Requirements
- python >= 3.6
- tensorflow 2.0.0
- argparse
- os
- glob
- numpy