Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/stillonearth/checkersonbevy
🏁 Checkers on bevy with AI and p2p network play
https://github.com/stillonearth/checkersonbevy
bevy checkers
Last synced: about 2 months ago
JSON representation
🏁 Checkers on bevy with AI and p2p network play
- Host: GitHub
- URL: https://github.com/stillonearth/checkersonbevy
- Owner: stillonearth
- Created: 2022-01-13T09:13:21.000Z (almost 3 years ago)
- Default Branch: master
- Last Pushed: 2023-11-19T19:17:37.000Z (about 1 year ago)
- Last Synced: 2023-11-19T20:24:58.053Z (about 1 year ago)
- Topics: bevy, checkers
- Language: Rust
- Homepage:
- Size: 126 MB
- Stars: 17
- Watchers: 2
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# CheckersOnBevy
https://user-images.githubusercontent.com/97428129/202233088-5ad38413-e035-4750-8273-e5475080347d.mp4
A checkers app with:
- AI: 🧠 Train agents and play against NN-trained opponent
- P2P: Play over Veilid## 📋 Changelog
- **0.3.0** `bevy` updated to 0.8.1
- **0.4.0** `tch-rs` switched to `tract-onnx `
- **0.4.1** `bevy` updated to 0.9.0
- **0.5.0** `bevy` updated to 0.11
- **0.6.0** `checkers-p2p` to play over network## Structure
```
CheckersOnBevy
|--checkers-core # Contains bevy application and game core mechanics. Can run standalone game.
|--checkers-app # Bevy front-end application
| |--assets # Models, Fonts and pictures
|--checkers-ai # Python code to train a model and Rust deployment
|--checkers-p2p # Play over p2p network
|--checkers-server # gRPC server with game core mechanics
`--checkers-client # Bevy frontend that connects with server.
```### 📝 Usage
1. Install pytorch and rust
2. git clone repository
3. Build project with `cargo build`
4. `cargo run --bin checkers-app`## Usage
```
cargo run --bin checkers-p2p # run p2p appcargo run --bin checkers-app # run vsai app
cargo run --bin checkers-server # run server to train ai
cargo run --bin checkers-client # run client to see AI training process (see checkers-ai)
```