An open API service indexing awesome lists of open source software.

https://github.com/stla/simplicialcubature

Multidimensional integration on simplices.
https://github.com/stla/simplicialcubature

haskell

Last synced: 7 months ago
JSON representation

Multidimensional integration on simplices.

Awesome Lists containing this project

README

          

# simplicialcubature

Pure Haskell implementation of simplicial cubature (integration on a simplex).

```haskell
integrateOnSimplex
:: (VectorD -> VectorD) -- integrand
-> Simplices -- domain of integration (union of the simplices)
-> Int -- number of components of the integrand
-> Int -- maximum number of evaluations
-> Double -- desired absolute error
-> Double -- desired relative error
-> Int -- integration rule: 1, 2, 3 or 4
-> IO Results -- values, error estimates, evaluations, success
```

## Example

![equation](http://latex.codecogs.com/gif.latex?%5Cint_0%5E1%5Cint_0%5Ex%5Cint_0%5Ey%5Cexp%28x+y+z%29%5C,%5Cmathrm%7Bd%7Dz%5C,%5Cmathrm%7Bd%7Dy%5C,%5Cmathrm%7Bd%7Dx=%5Cfrac%7B1%7D%7B6%7D%28e-1%29%5E3%5Capprox%20.8455356853)

Define the integrand:

```haskell
import Data.Vector.Unboxed as V
f :: Vector Double -> Vector Double
f v = singleton $ exp (V.sum v)
```

Define the simplex:

```haskell
simplex = [[0,0,0],[1,1,1],[0,1,1],[0,0,1]]
```

Integrate:

```haskell
> import SimplexCubature
> integrateOnSimplex f [simplex] 1 100000 0 1e-10 3
Results { values = [0.8455356852954488]
, errorEstimates = [8.082378899762402e-11]
, evaluations = 8700
, success = True }
```

For a scalar-valued integrand, it's more convenient to define... a scalar-valued
integrand! That is:

```haskell
f :: Vector Double -> Double
f v = exp (V.sum v)
```

and then to use `integrateOnSimplex'`:

```haskell
> integrateOnSimplex' f [simplex] 100000 0 1e-10 3
Result { value = 0.8455356852954488
, errorEstimate = 8.082378899762402e-11
, evaluations = 8700
, success = True }
```

## Integration on a spherical triangle

The library also allows to evaluate an integral on a spherical simplex on the
unit sphere (in dimension 3, a spherical triangle).

For example take the first orthant in dimension 3:

```haskell
> import SphericalSimplexCubature
> o1 = orthants 3 !! 0
> o1
[ [1.0, 0.0, 0.0]
, [0.0, 1.0, 0.0]
, [0.0, 0.0, 1.0] ]
```

And this integrand:

```haskell
integrand :: [Double] -> Double
integrand x = x!!0 * x!!0 * x!!2 + x!!1 * x!!1 * x!!2 + x!!2 * x!!2 * x!!2
```

Compute the integral (the exact result is `pi/4`):

```haskell
> integrateOnSphericalSimplex integrand o1 10000 0 1e-5 3
Result { value = 0.7853978756312796
, errorEstimate = 7.248620366022506e-6
, evaluations = 3282
, success = True }
```