An open API service indexing awesome lists of open source software.

https://github.com/strands-agents/tools

A set of tools that gives agents powerful capabilities.
https://github.com/strands-agents/tools

agentic agentic-ai agents ai anthropic autonomous-agents bedrock genai litellm llama llm machine-learning mcp multi-agent-systems ollama openai opentelemetry python

Last synced: 3 months ago
JSON representation

A set of tools that gives agents powerful capabilities.

Awesome Lists containing this project

README

          




Strands Agents


Strands Agents Tools


A model-driven approach to building AI agents in just a few lines of code.


GitHub commit activity
GitHub open issues
GitHub open pull requests
License
PyPI version
Python versions



Documentation
Samples
Python SDK
Tools
Agent Builder
MCP Server


Strands Agents Tools provides a powerful set of tools for your agents to use. It bridges the gap between large language models and practical applications by offering ready-to-use tools for file operations, system execution, API interactions, mathematical operations, and more.

## ✨ Features

- 📁 **File Operations** - Read, write, and edit files with syntax highlighting and intelligent modifications
- 🖥️ **Shell Integration** - Execute and interact with shell commands securely
- 🧠 **Memory** - Store user and agent memories across agent runs to provide personalized experiences with both Mem0 and Amazon Bedrock Knowledge Bases
- 🌐 **HTTP Client** - Make API requests with comprehensive authentication support
- 💬 **Slack Client** - Real-time Slack events, message processing, and Slack API access
- 🐍 **Python Execution** - Run Python code snippets with state persistence, user confirmation for code execution, and safety features
- 🧮 **Mathematical Tools** - Perform advanced calculations with symbolic math capabilities
- ☁️ **AWS Integration** - Seamless access to AWS services
- 🖼️ **Image Processing** - Generate and process images for AI applications
- 🎥 **Video Processing** - Use models and agents to generate dynamic videos
- 🎙️ **Audio Output** - Enable models to generate audio and speak
- 🔄 **Environment Management** - Handle environment variables safely
- 📝 **Journaling** - Create and manage structured logs and journals
- ⏱️ **Task Scheduling** - Schedule and manage cron jobs
- 🧠 **Advanced Reasoning** - Tools for complex thinking and reasoning capabilities
- 🐝 **Swarm Intelligence** - Coordinate multiple AI agents for parallel problem solving with shared memory
- 🔄 **Multiple tools in Parallel** - Call multiple other tools at the same time in parallel with Batch Tool

## 📦 Installation

### Quick Install

```bash
pip install strands-agents-tools
```

To install the dependencies for optional tools:

```bash
pip install strands-agents-tools[mem0_memory]
```

### Development Install

```bash
# Clone the repository
git clone https://github.com/strands-agents/tools.git
cd tools

# Create and activate virtual environment
python3 -m venv .venv
source .venv/bin/activate # On Windows: venv\Scripts\activate

# Install in development mode
pip install -e ".[dev]"

# Install pre-commit hooks
pre-commit install
```

### Tools Overview

Below is a comprehensive table of all available tools, how to use them with an agent, and typical use cases:

| Tool | Agent Usage | Use Case |
|------|-------------|----------|
| file_read | `agent.tool.file_read(path="path/to/file.txt")` | Reading configuration files, parsing code files, loading datasets |
| file_write | `agent.tool.file_write(path="path/to/file.txt", content="file content")` | Writing results to files, creating new files, saving output data |
| editor | `agent.tool.editor(command="view", path="path/to/file.py")` | Advanced file operations like syntax highlighting, pattern replacement, and multi-file edits |
| shell* | `agent.tool.shell(command="ls -la")` | Executing shell commands, interacting with the operating system, running scripts |
| http_request | `agent.tool.http_request(method="GET", url="https://api.example.com/data")` | Making API calls, fetching web data, sending data to external services |
| python_repl* | `agent.tool.python_repl(code="import pandas as pd\ndf = pd.read_csv('data.csv')\nprint(df.head())")` | Running Python code snippets, data analysis, executing complex logic with user confirmation for security |
| calculator | `agent.tool.calculator(expression="2 * sin(pi/4) + log(e**2)")` | Performing mathematical operations, symbolic math, equation solving |
| use_aws | `agent.tool.use_aws(service_name="s3", operation_name="list_buckets", parameters={}, region="us-west-2")` | Interacting with AWS services, cloud resource management |
| retrieve | `agent.tool.retrieve(text="What is STRANDS?")` | Retrieving information from Amazon Bedrock Knowledge Bases |
| nova_reels | `agent.tool.nova_reels(action="create", text="A cinematic shot of mountains", s3_bucket="my-bucket")` | Create high-quality videos using Amazon Bedrock Nova Reel with configurable parameters via environment variables |
| mem0_memory | `agent.tool.mem0_memory(action="store", content="Remember I like to tennis", user_id="alex")` | Store user and agent memories across agent runs to provide personalized experience |
| memory | `agent.tool.memory(action="retrieve", query="product features")` | Store, retrieve, list, and manage documents in Amazon Bedrock Knowledge Bases with configurable parameters via environment variables |
| environment | `agent.tool.environment(action="list", prefix="AWS_")` | Managing environment variables, configuration management |
| generate_image | `agent.tool.generate_image(prompt="A sunset over mountains")` | Creating AI-generated images for various applications |
| image_reader | `agent.tool.image_reader(image_path="path/to/image.jpg")` | Processing and reading image files for AI analysis |
| journal | `agent.tool.journal(action="write", content="Today's progress notes")` | Creating structured logs, maintaining documentation |
| think | `agent.tool.think(thought="Complex problem to analyze", cycle_count=3)` | Advanced reasoning, multi-step thinking processes |
| load_tool | `agent.tool.load_tool(path="path/to/custom_tool.py", name="custom_tool")` | Dynamically loading custom tools and extensions |
| swarm | `agent.tool.swarm(task="Analyze this problem", swarm_size=3, coordination_pattern="collaborative")` | Coordinating multiple AI agents to solve complex problems through collective intelligence |
| current_time | `agent.tool.current_time(timezone="US/Pacific")` | Get the current time in ISO 8601 format for a specified timezone |
| sleep | `agent.tool.sleep(seconds=5)` | Pause execution for the specified number of seconds, interruptible with SIGINT (Ctrl+C) |
| agent_graph | `agent.tool.agent_graph(agents=["agent1", "agent2"], connections=[{"from": "agent1", "to": "agent2"}])` | Create and visualize agent relationship graphs for complex multi-agent systems |
| cron* | `agent.tool.cron(action="schedule", name="task", schedule="0 * * * *", command="backup.sh")` | Schedule and manage recurring tasks with cron job syntax
**Does not work on Windows |
| slack | `agent.tool.slack(action="post_message", channel="general", text="Hello team!")` | Interact with Slack workspace for messaging and monitoring |
| speak | `agent.tool.speak(text="Operation completed successfully", style="green", mode="polly")` | Output status messages with rich formatting and optional text-to-speech |
| stop | `agent.tool.stop(message="Process terminated by user request")` | Gracefully terminate agent execution with custom message |
| use_llm | `agent.tool.use_llm(prompt="Analyze this data", system_prompt="You are a data analyst")` | Create nested AI loops with customized system prompts for specialized tasks |
| workflow | `agent.tool.workflow(action="create", name="data_pipeline", steps=[{"tool": "file_read"}, {"tool": "python_repl"}])` | Define, execute, and manage multi-step automated workflows |
| batch| `agent.tool.batch(invocations=[{"name": "current_time", "arguments": {"timezone": "Europe/London"}}, {"name": "stop", "arguments": {}}])` | Call multiple other tools in parallel. |

\* *These tools do not work on windows*

## 💻 Usage Examples

### File Operations

```python
from strands import Agent
from strands_tools import file_read, file_write, editor

agent = Agent(tools=[file_read, file_write, editor])

agent.tool.file_read(path="config.json")
agent.tool.file_write(path="output.txt", content="Hello, world!")
agent.tool.editor(command="view", path="script.py")
```

### Shell Commands

*Note: `shell` does not work on Windows.*

```python
from strands import Agent
from strands_tools import shell

agent = Agent(tools=[shell])

# Execute a single command
result = agent.tool.shell(command="ls -la")

# Execute a sequence of commands
results = agent.tool.shell(command=["mkdir -p test_dir", "cd test_dir", "touch test.txt"])

# Execute commands with error handling
agent.tool.shell(command="risky-command", ignore_errors=True)
```

### HTTP Requests

```python
from strands import Agent
from strands_tools import http_request

agent = Agent(tools=[http_request])

# Make a simple GET request
response = agent.tool.http_request(
method="GET",
url="https://api.example.com/data"
)

# POST request with authentication
response = agent.tool.http_request(
method="POST",
url="https://api.example.com/resource",
headers={"Content-Type": "application/json"},
body=json.dumps({"key": "value"}),
auth_type="Bearer",
auth_token="your_token_here"
)
```

### Python Code Execution

*Note: `python_repl` does not work on Windows.*

```python
from strands import Agent
from strands_tools import python_repl

agent = Agent(tools=[python_repl])

# Execute Python code with state persistence
result = agent.tool.python_repl(code="""
import pandas as pd

# Load and process data
data = pd.read_csv('data.csv')
processed = data.groupby('category').mean()

processed.head()
""")
```

### Swarm Intelligence

```python
from strands import Agent
from strands_tools import swarm

agent = Agent(tools=[swarm])

# Create a collaborative swarm of agents to tackle a complex problem
result = agent.tool.swarm(
task="Generate creative solutions for reducing plastic waste in urban areas",
swarm_size=5,
coordination_pattern="collaborative"
)

# Create a competitive swarm for diverse solution generation
result = agent.tool.swarm(
task="Design an innovative product for smart home automation",
swarm_size=3,
coordination_pattern="competitive"
)

# Hybrid approach combining collaboration and competition
result = agent.tool.swarm(
task="Develop marketing strategies for a new sustainable fashion brand",
swarm_size=4,
coordination_pattern="hybrid"
)
```

### Use AWS

```python
from strands import Agent
from strands_tools import use_aws

agent = Agent(tools=[use_aws])

# List S3 buckets
result = agent.tool.use_aws(
service_name="s3",
operation_name="list_buckets",
parameters={},
region="us-east-1",
label="List all S3 buckets"
)

# Get the contents of a specific S3 bucket
result = agent.tool.use_aws(
service_name="s3",
operation_name="list_objects_v2",
parameters={"Bucket": "example-bucket"}, # Replace with your actual bucket name
region="us-east-1",
label="List objects in a specific S3 bucket"
)

# Get the list of EC2 subnets
result = agent.tool.use_aws(
service_name="ec2",
operation_name="describe_subnets",
parameters={},
region="us-east-1",
label="List all subnets"
)
```

### Batch Tool

```python
import os
import sys

from strands import Agent
from strands_tools import batch, http_request, use_aws

# Example usage of the batch with http_request and use_aws tools
agent = Agent(tools=[batch, http_request, use_aws])

result = agent.tool.batch(
invocations=[
{"name": "http_request", "arguments": {"method": "GET", "url": "https://api.ipify.org?format=json"}},
{
"name": "use_aws",
"arguments": {
"service_name": "s3",
"operation_name": "list_buckets",
"parameters": {},
"region": "us-east-1",
"label": "List S3 Buckets"
}
},
]
)
```

## 🌍 Environment Variables Configuration

Agents Tools provides extensive customization through environment variables. This allows you to configure tool behavior without modifying code, making it ideal for different environments (development, testing, production).

### Global Environment Variables

These variables affect multiple tools:

| Environment Variable | Description | Default | Affected Tools |
|----------------------|-------------|---------|---------------|
| BYPASS_TOOL_CONSENT | Bypass consent for tool invocation, set to "true" to enable | false | All tools that require consent (e.g. shell, file_write, python_repl) |
| STRANDS_TOOL_CONSOLE_MODE | Enable rich UI for tools, set to "enabled" to enable | disabled | All tools that have optional rich UI |
| AWS_REGION | Default AWS region for AWS operations | us-west-2 | use_aws, retrieve, generate_image, memory, nova_reels |
| AWS_PROFILE | AWS profile name to use from ~/.aws/credentials | default | use_aws, retrieve |
| LOG_LEVEL | Logging level (DEBUG, INFO, WARNING, ERROR) | INFO | All tools |

### Tool-Specific Environment Variables

#### Calculator Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| CALCULATOR_MODE | Default calculation mode | evaluate |
| CALCULATOR_PRECISION | Number of decimal places for results | 10 |
| CALCULATOR_SCIENTIFIC | Whether to use scientific notation for numbers | False |
| CALCULATOR_FORCE_NUMERIC | Force numeric evaluation of symbolic expressions | False |
| CALCULATOR_FORCE_SCIENTIFIC_THRESHOLD | Threshold for automatic scientific notation | 1e21 |
| CALCULATOR_DERIVE_ORDER | Default order for derivatives | 1 |
| CALCULATOR_SERIES_POINT | Default point for series expansion | 0 |
| CALCULATOR_SERIES_ORDER | Default order for series expansion | 5 |

#### Current Time Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| DEFAULT_TIMEZONE | Default timezone for current_time tool | UTC |

#### Sleep Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| MAX_SLEEP_SECONDS | Maximum allowed sleep duration in seconds | 300 |

#### Mem0 Memory Tool

The Mem0 Memory Tool supports three different backend configurations:

1. **Mem0 Platform**:
- Uses the Mem0 Platform API for memory management
- Requires a Mem0 API key

2. **OpenSearch** (Recommended for AWS environments):
- Uses OpenSearch as the vector store backend
- Requires AWS credentials and OpenSearch configuration

3. **FAISS** (Default for local development):
- Uses FAISS as the local vector store backend
- Requires faiss-cpu package for local vector storage

| Environment Variable | Description | Default | Required For |
|----------------------|-------------|---------|--------------|
| MEM0_API_KEY | Mem0 Platform API key | None | Mem0 Platform |
| OPENSEARCH_HOST | OpenSearch Host URL | None | OpenSearch |
| AWS_REGION | AWS Region for OpenSearch | us-west-2 | OpenSearch |
| DEV | Enable development mode (bypasses confirmations) | false | All modes |

**Note**:
- If `MEM0_API_KEY` is set, the tool will use the Mem0 Platform
- If `OPENSEARCH_HOST` is set, the tool will use OpenSearch
- If neither is set, the tool will default to FAISS (requires `faiss-cpu` package)

#### Memory Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| MEMORY_DEFAULT_MAX_RESULTS | Default maximum results for list operations | 50 |
| MEMORY_DEFAULT_MIN_SCORE | Default minimum relevance score for filtering results | 0.4 |
#### Nova Reels Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| NOVA_REEL_DEFAULT_SEED | Default seed for video generation | 0 |
| NOVA_REEL_DEFAULT_FPS | Default frames per second for generated videos | 24 |
| NOVA_REEL_DEFAULT_DIMENSION | Default video resolution in WIDTHxHEIGHT format | 1280x720 |
| NOVA_REEL_DEFAULT_MAX_RESULTS | Default maximum number of jobs to return for list action | 10 |

#### Python REPL Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| PYTHON_REPL_BINARY_MAX_LEN | Maximum length for binary content before truncation | 100 |

#### Shell Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| SHELL_DEFAULT_TIMEOUT | Default timeout in seconds for shell commands | 900 |

#### Slack Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| SLACK_DEFAULT_EVENT_COUNT | Default number of events to retrieve | 42 |
| STRANDS_SLACK_AUTO_REPLY | Enable automatic replies to messages | false |
| STRANDS_SLACK_LISTEN_ONLY_TAG | Only process messages containing this tag | None |

#### Speak Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| SPEAK_DEFAULT_STYLE | Default style for status messages | green |
| SPEAK_DEFAULT_MODE | Default speech mode (fast/polly) | fast |
| SPEAK_DEFAULT_VOICE_ID | Default Polly voice ID | Joanna |
| SPEAK_DEFAULT_OUTPUT_PATH | Default audio output path | speech_output.mp3 |
| SPEAK_DEFAULT_PLAY_AUDIO | Whether to play audio by default | True |

#### Editor Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| EDITOR_DIR_TREE_MAX_DEPTH | Maximum depth for directory tree visualization | 2 |
| EDITOR_DEFAULT_STYLE | Default style for output panels | default |
| EDITOR_DEFAULT_LANGUAGE | Default language for syntax highlighting | python |

#### Environment Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| ENV_VARS_MASKED_DEFAULT | Default setting for masking sensitive values | true |

#### File Read Tool

| Environment Variable | Description | Default |
|----------------------|-------------|---------|
| FILE_READ_RECURSIVE_DEFAULT | Default setting for recursive file searching | true |
| FILE_READ_CONTEXT_LINES_DEFAULT | Default number of context lines around search matches | 2 |
| FILE_READ_START_LINE_DEFAULT | Default starting line number for lines mode | 0 |
| FILE_READ_CHUNK_OFFSET_DEFAULT | Default byte offset for chunk mode | 0 |
| FILE_READ_DIFF_TYPE_DEFAULT | Default diff type for file comparisons | unified |
| FILE_READ_USE_GIT_DEFAULT | Default setting for using git in time machine mode | true |
| FILE_READ_NUM_REVISIONS_DEFAULT | Default number of revisions to show in time machine mode | 5 |

## Contributing ❤️

We welcome contributions! See our [Contributing Guide](CONTRIBUTING.md) for details on:
- Reporting bugs & features
- Development setup
- Contributing via Pull Requests
- Code of Conduct
- Reporting of security issues

## License

This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.

## Security

See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.

## ⚠️ Preview Status

Strands Agents is currently in public preview. During this period:
- APIs may change as we refine the SDK
- We welcome feedback and contributions