Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/subpic/ku
Training management utilities for TensorFlow Keras.
https://github.com/subpic/ku
deep-learning hdf5 image-processing keras keras-generators tensorflow
Last synced: 30 days ago
JSON representation
Training management utilities for TensorFlow Keras.
- Host: GitHub
- URL: https://github.com/subpic/ku
- Owner: subpic
- License: mit
- Created: 2019-08-02T07:42:16.000Z (over 5 years ago)
- Default Branch: stable
- Last Pushed: 2022-10-31T13:31:25.000Z (about 2 years ago)
- Last Synced: 2024-09-28T09:09:32.173Z (4 months ago)
- Topics: deep-learning, hdf5, image-processing, keras, keras-generators, tensorflow
- Language: Python
- Homepage:
- Size: 673 KB
- Stars: 1
- Watchers: 4
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Keras Utilities (KU)
The project contains utilities for image assessment development with Keras/Tensorflow, including utilities for model training, custom generators, image management and augmentation. This is an extension of [kutils](https://github.com/subpic/kutils).
## Overview
Some of the key components of each file:
**`model_helper.py`**:
* `ModelHelper`: Wrapper class that simplifies default usage of Keras for regression models.
**`generators.py`**:
* `DataGeneratorDisk`, `DataGeneratorHDF5`: Keras generators for on-disk images, and HDF5 stored features/images
**`image_utils.py`**:
* various utility functions for manipulating images (read, write to HDF5, batch resize, view batch)
**`image_augmenter.py`**:
* `ImageAugmenter`: Create custom image augmentation functions for training Keras models.
**`generic.py`**:
* `H5Helper`: Manage named data sets in HDF5 files, for us in Keras generators.
* `ShortNameBuilder`: Utility for building short (file) names that contain multiple parameters.**`applications.py`**:
* `model_inception_multigap`, `model_inceptionresnet_multigap`: Model definitions for extracting MLSP narrow features
* `model_inception_pooled`, `model_inceptionresnet_pooled`: Model definitions for extracting MLSP wide featuresYou can find more information in the docstrings.