Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sudohainguyen/medical-image-segmentation
https://github.com/sudohainguyen/medical-image-segmentation
Last synced: 28 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/sudohainguyen/medical-image-segmentation
- Owner: sudohainguyen
- Archived: true
- Created: 2020-07-06T06:13:11.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-10-15T16:52:56.000Z (about 4 years ago)
- Last Synced: 2024-08-03T06:01:14.701Z (4 months ago)
- Language: Python
- Homepage:
- Size: 32.2 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome_medical - medical-image-segmentation
README
# Medical Image segmentation
This project is about my personal experiments with various of Neural Network for medical image segmentation (organs, brain, tumors,...) implemented in PyTorch and PyTorch Lightning.
## Dataset
- [x] Dataset B
- [ ] LITS 2017## Neural Nets
- [x] UNet
- [x] AttentionUNet
- [x] Nested-UNet
- [ ] STAN ([Small tumor-aware network](https://arxiv.org/pdf/2002.01034.pdf))
- [ ] MSDNet ([Mixed-scale dense convolutional network](https://www.pnas.org/content/pnas/115/2/254.full.pdf))## Attention mechanism
- [x] Attention Gated ([paper](https://openreview.net/pdf?id=Skft7cijM))
- [ ] Grid Attention
- [ ] Axial Attention ([paper](https://arxiv.org/abs/2003.07853))## Loss function
- [x] Dice loss
- [ ] Lovasz loss
- [ ] Tversky loss## Demo