Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sunset1995/hohonet
"HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features" official pytorch implementation.
https://github.com/sunset1995/hohonet
360-photo computer-vision cvpr2021 depth-estimation hohonet room-layout semantic-segmentation
Last synced: 4 days ago
JSON representation
"HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features" official pytorch implementation.
- Host: GitHub
- URL: https://github.com/sunset1995/hohonet
- Owner: sunset1995
- License: mit
- Created: 2021-03-04T10:30:33.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2023-02-05T06:50:50.000Z (almost 2 years ago)
- Last Synced: 2023-03-01T11:17:16.488Z (over 1 year ago)
- Topics: 360-photo, computer-vision, cvpr2021, depth-estimation, hohonet, room-layout, semantic-segmentation
- Language: Jupyter Notebook
- Homepage: https://sunset1995.github.io/HoHoNet/
- Size: 9.37 MB
- Stars: 86
- Watchers: 6
- Forks: 20
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# HoHoNet
Code for our paper in CVPR 2021: **HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features** ([paper](https://arxiv.org/abs/2011.11498), [video](https://www.youtube.com/watch?v=xXtRaRKmMpA)).
![teaser](./assets/repo_teaser.jpg)
#### News
- **April 3, 2021**: Release inference code, jupyter notebook and visualization tools. Guide for reproduction is also finished.
- **March 4, 2021**: A new backbone **[HarDNet](https://github.com/PingoLH/Pytorch-HarDNet)** is included, which shows better speed and depth accuracy.## Pretrained weight
Links to trained weights `ckpt/`: [download on Google drive](https://drive.google.com/drive/folders/1raT3vRXnQXRAQuYq36dE-93xFc_hgkTQ?usp=sharing) or [download on Dropbox](https://www.dropbox.com/sh/b014nop5jrehpoq/AACWNTMMHEAbaKOO1drqGio4a?dl=0).## Inference
In below, we use an out-of-training-distribution 360 image from PanoContext as an example.### Jupyter notebook
See [infer_depth.ipynb](infer_depth.ipynb), [infer_layout.ipynb](infer_layout.ipynb), and [infer_sem.ipynb](infer_sem.ipynb) for interactive demo and visualization.### Batch inference
Run `infer_depth.py`/`infer_layout.py` to inference depth/layout.
Use `--cfg` and `--pth` to specify the path to config file and pretrained weight.
Specify input path with `--inp`. Glob pattern for a batch of files is avaiable.
The results are stored into `--out` directory with the same filename with extention set ot `.depth.png` and `.layout.txt`.Example for depth:
```
python infer_depth.py --cfg config/mp3d_depth/HOHO_depth_dct_efficienthc_TransEn1_hardnet.yaml --pth ckpt/mp3d_depth_HOHO_depth_dct_efficienthc_TransEn1_hardnet/ep60.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png
```Example for layout:
```
python infer_layout.py --cfg config/mp3d_layout/HOHO_layout_aug_efficienthc_Transen1_resnet34.yaml --pth ckpt/mp3d_layout_HOHO_layout_aug_efficienthc_Transen1_resnet34/ep300.pth --out assets/ --inp assets/pano_asmasuxybohhcj.png
```### Visualization tools
To visualize layout as 3D mesh, run:
```
python vis_layout.py --img assets/pano_asmasuxybohhcj.png --layout assets/pano_asmasuxybohhcj.layout.txt
```
Rendering options: `--show_ceiling`, `--ignore_floor`, `--ignore_wall`, `--ignore_wireframe` are available.
Set `--out` to export the mesh to `ply` file.
Set `--no_vis` to disable the visualization.
To visualize depth as point cloud, run:
```
python vis_depth.py --img assets/pano_asmasuxybohhcj.png --depth assets/pano_asmasuxybohhcj.depth.png
```
Rendering options: `--crop_ratio`, `--crop_z_above`.
## Reproduction
Please see [README_reproduction.md](README_reproduction.md) for the guide to:
1. prepare the datasets for each task in our paper
2. reproduce the training for each task
3. reproduce the numerical results in our paper with the provided pretrained weights## Citation
```
@inproceedings{SunSC21,
author = {Cheng Sun and
Min Sun and
Hwann{-}Tzong Chen},
title = {HoHoNet: 360 Indoor Holistic Understanding With Latent Horizontal
Features},
booktitle = {CVPR},
year = {2021},
}
```