Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sustainablemobility/cyc-cp
This repository provides the benchmark for Cycling Close Pass Near Miss (Cyc-CP).
https://github.com/sustainablemobility/cyc-cp
Last synced: 3 days ago
JSON representation
This repository provides the benchmark for Cycling Close Pass Near Miss (Cyc-CP).
- Host: GitHub
- URL: https://github.com/sustainablemobility/cyc-cp
- Owner: SustainableMobility
- Created: 2023-04-12T01:17:31.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-04-27T07:57:45.000Z (over 1 year ago)
- Last Synced: 2024-11-11T01:28:21.745Z (2 months ago)
- Language: Jupyter Notebook
- Size: 9.13 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# cyc-cp
This repository provides the benchmark for Cycling Close Pass Near Miss (Cyc-CP).## Installation
1. Clone the repo: `git clone https://github.com/SustainableMobility/cyc-cp.git`
2. Install the package:
1. `cd cyc-cp`
2. `pip install -e .`
## How To Use
1. `cd cyc-cp`
2. Train crnn or i3d model following:
1. `python ./cnm/scene_lvl/i3d/i3d.py --csv_data_path path/to/csv_data --image_data_path path/to/image_data --exp_data_dir path/to/save/exp_data`
2. `python ./cnm/scene_lvl/crnn/crnn.py --csv_data_path path/to/csv_data --image_data_path path/to/image_data --exp_data_dir path/to/save/exp_data`
* where the meaning of the arguments can be found in the code help. Specifically,
* --csv_data_path: The file path of the .csv file with dataset info.
* --image_data_path: The directory path saving all video frames.
* --exp_data_dir: The directory to save results to.## Dataset Preparation
* Victorian On-bike Cycling (legacy): available on [Monash Bridges](https://figshare.com/projects/A_Benchmark_for_Cycling_Close_Pass_Near_Miss_Event_Detection_from_Video_Streams/163438)
* Victorian On-bike Cycling (ongoing): under collection ...
* CARLA (simulation): available on [Monash Bridges](https://figshare.com/projects/A_Benchmark_for_Cycling_Close_Pass_Near_Miss_Event_Detection_from_Video_Streams/163438)
* NuScences: available on## Hardware Requirements Summary
* Disk: to save all datasets about > 2TB disk space is required.
* RAM and GPU: (only tested on Victorian On-bike Cycling (legacy))
* Scene-level:
* I3D: (Batch_size:16, image_size: 256x342, frames: [-5, 15])
* GPU memory: 7.5GB, CPU memory: 3 GB (RTX-2080 has 8 GB memory, so that’s why [-5, 15] frames are included in a video clip.)
* CRNN: (Batch_size: 16, image_size: 224x224, frame: [20,25])
* GPU memory: 3 GB, CPU memory: 6 GB
* Instance-level (**TODO**)More Notes about the project can be found in [the shared google doc](https://docs.google.com/document/d/13UxCa-qcIuyZ6V3-oTSfUFmnSvWxZjIalBQ6MdcVUCs/edit?usp=sharing).