Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/suvoooo/cta-sourceextension2023
https://github.com/suvoooo/cta-sourceextension2023
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/suvoooo/cta-sourceextension2023
- Owner: suvoooo
- Created: 2023-07-03T11:40:34.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-08-10T07:19:40.000Z (over 1 year ago)
- Last Synced: 2024-10-28T15:25:45.476Z (3 months ago)
- Language: Jupyter Notebook
- Size: 11.3 MB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# CTA-SourceExtension2023
Corresponding conference proceedings [(ICRC 2023; Nagoya, JP)](https://www.icrc2023.org/) is available [here](https://pos.sissa.it/444/599/).
To cite:```
@inproceedings{Vodeb:2023eS,
author = "Vodeb, V and Bhattacharyya, S and Principe, G and Zaharijas, G and Ruiz, R and Stoppa, F and Caron, S and Malyshev, D",
title = "{Investigating the VHE Gamma-ray Sources Using Deep Neural Networks}",
doi = "10.22323/1.444.0599",
booktitle = "Proceedings of 38th International Cosmic Ray Conference {\textemdash} PoS(ICRC2023)",
year = 2023,
volume = "444",
pages = "599"
}
```## Neural Net Architecture (Simplified)
![Neural-Net](https://github.com/suvoooo/CTA-SourceExtension2023/blob/main/plots/plot_neural_net_ICRC2023.png-1.png)
----------------------------------------------
### Activation Maps from Conv4 Layer for Sources with Different Extensions
#### C0: $0.03 < \sigma < 0.1$
![Activation Maps](https://github.com/suvoooo/CTA-SourceExtension2023/blob/main/plots/check_conv_layers_C0_999_final.png)
#### C1: $0.1 < \sigma < 0.3$
![ActivationsMapsC1](https://github.com/suvoooo/CTA-SourceExtension2023/blob/main/plots/check_conv_layers_C1_999_final.png)
--------------------------------------------
### Libraries & Versions:
1. Python: `3.9.12`
2. Matplotlib: `3.5.1`
3. Numpy: `1.22.3`
4. Scipy: `1.8.1`
5. Sklearn: `1.0.2`
6. TensorFlow: `2.4.1`
7. Gammapy: `1.0.1`
8. ctools: `1.7.4`----------------------------------------------------
### scripts:
Python scripts used for the production
0. _**generate_templates_updated.py:**_ Template generation (fits format) including cosmic-ray background and source contributions using `ctools`.
1. _**fits_to_npy_CTA_extent_sel.py:**_ Convert the fits files from `ctools` simulation to numpy arrays; For every fits file we have 4 numpy arrays for 4 energy bins
2. _**classification_DataLoader_CTA_Ext.py:**_ Dataloader module used for preprocessing the numpy arrays to make them suitable for our network. Also includes augmentation for the training set.
3. _**neural_nets.py:**_ Module to import the network used for our task.
4. _**train.py:**_ Training script; Train, evaluate (on validation set) and test (on test-set); Plot activation maps from hidden conv layer (for a random test image).
----------------------------------------------------
### notebooks:
Helping Notebooks to visualize several sections of scripts
1. _**read_fits_augment_npy.ipynb:**_ visualize the numpy arrays (source images) after processing the fits files; Also a visualizer for the augmentations used.
2. _**Neural-Net-Arch.ipynb:**_ import neural_nets.py and check in detail the network used for analysis.