Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/suzgunmirac/BIG-Bench-Hard
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
https://github.com/suzgunmirac/BIG-Bench-Hard
Last synced: 2 months ago
JSON representation
Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them
- Host: GitHub
- URL: https://github.com/suzgunmirac/BIG-Bench-Hard
- Owner: suzgunmirac
- License: mit
- Created: 2022-10-15T22:55:26.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-06-25T20:16:12.000Z (7 months ago)
- Last Synced: 2024-08-03T02:09:14.640Z (5 months ago)
- Homepage: https://arxiv.org/abs/2210.09261
- Size: 4.82 MB
- Stars: 397
- Watchers: 3
- Forks: 22
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-llm-eval - BIG-Bench-Hard - Bench任务,我们称之为BIG-Bench Hard(BBH)。这些任务是以前的语言模型评估未能超越平均人工评分者的任务 | (Datasets-or-Benchmark / 通用)
- StarryDivineSky - suzgunmirac/BIG-Bench-Hard - Bench Hard(BBH) 是一个包含 23 个具有挑战性的 BIG-Bench任务的子集,这些任务是现有语言模型无法解决的。研究发现,通过应用链式思维 (CoT) 提示,PaLM 模型能够在 23 个任务中的 10 个任务上超越人类平均水平,而 Codex 模型则能够在 23 个任务中的 17 个任务上超越人类平均水平。BBH 中的许多任务需要多步推理,因此没有 CoT 的少样本提示无法充分展现语言模型的最佳性能,而 CoT 提示则能够更好地展现语言模型的能力。研究还分析了 CoT 与模型规模之间的相互作用,发现 CoT 能够在一些原本规模扩展曲线平坦的 BBH 任务上实现性能的突显。该项目包含 BBH 任务文件、CoT 提示文件和 Codex 模型输出结果。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
README
# BIG-Bench Hard
![BBH-Results](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/figures/bbh-results.png)## Abstract
[BIG-Bench](https://github.com/google/BIG-bench) [(Srivastava et al., 2022)](https://arxiv.org/abs/2206.04615) is a diverse evaluation suite that focuses on tasks believed to be beyond the capabilities of current language models. Language models have already made good progress on this benchmark, with the best model in the BIG-Bench paper outperforming average reported human-rater results on 65% of the BIG-Bench tasks via few-shot prompting. But on what tasks do language models fall short of average human-rater performance, and are those tasks actually unsolvable by current language models?[In this work](https://arxiv.org/abs/2210.09261), we focus on a suite of 23 challenging BIG-Bench tasks which we call **BIG-Bench Hard (BBH)**. These are the task for which prior language model evaluations did not outperform the average human-rater. We find that applying chain-of-thought (CoT) prompting to BBH tasks enables PaLM to surpass the average humanrater performance on 10 of the 23 tasks, and Codex (code-davinci-002) to surpass the average human-rater performance on 17 of the 23 tasks. Since many tasks in BBH require multi-step reasoning, few-shot prompting without CoT, as done in the BIG-Bench evaluations (Srivastava et al., 2022), substantially underestimates the best performance and capabilities of language models, which is better captured via CoT prompting. As further analysis, we explore the interaction between CoT and model scale on BBH, finding that CoT enables emergent task performance on several BBH tasks with otherwise flat scaling curves.
## BBH Data
All the task files are under the directory `/bbh`.## CoT Prompts
All the chain-of-thought (CoT) prompt files are under the directory `/cot-prompts`![BBH-CoT-Prompts](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/figures/bbh-setup.png)
## Codex Results
The outputs from the Codex (code-davinci-002) model are under the directory `/code-davinci-002-outputs`.![BBH-Codex-Outputs](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/figures/bbh-model-outputs.png)
## Citation
If your research makes use of our data or results, please consider citing our paper as well as the BIG-Bench paper.**BIG Bench** ([_Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models_ (Srivastava et al., 2022)](https://arxiv.org/abs/2206.04615))
```
@article{srivastava2022beyond,
title={Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models},
author={Srivastava, Aarohi and Rastogi, Abhinav and Rao, Abhishek and Shoeb, Abu Awal Md and Abid, Abubakar and Fisch, Adam and Brown, Adam R and Santoro, Adam and Gupta, Aditya and Garriga-Alonso, Adri{\`a} and others},
journal={arXiv preprint arXiv:2206.04615},
year={2022}
}
```**BIG-Bench Hard** ([_Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them_ (Suzgun et al., 2022)](https://arxiv.org/abs/2210.09261))
```
@article{suzgun2022challenging,
title={Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them},
author={Suzgun, Mirac and Scales, Nathan and Sch{\"a}rli, Nathanael and Gehrmann, Sebastian and Tay, Yi and Chung, Hyung Won and Chowdhery, Aakanksha and Le, Quoc V and Chi, Ed H and Zhou, Denny and and Wei, Jason},
journal={arXiv preprint arXiv:2210.09261},
year={2022}
}
```