https://github.com/svaniksharma/relevancevectormachine.jl
An implementation of a relevance vector machine, a sparse Bayesian version of a SVM
https://github.com/svaniksharma/relevancevectormachine.jl
classification-models julia julia-package machine-learning machine-learning-algorithms machine-learning-models regression-models relevance-vector-machine
Last synced: 4 months ago
JSON representation
An implementation of a relevance vector machine, a sparse Bayesian version of a SVM
- Host: GitHub
- URL: https://github.com/svaniksharma/relevancevectormachine.jl
- Owner: svaniksharma
- License: mit
- Created: 2024-09-13T19:19:25.000Z (10 months ago)
- Default Branch: master
- Last Pushed: 2025-03-16T00:47:18.000Z (4 months ago)
- Last Synced: 2025-03-16T10:11:26.327Z (4 months ago)
- Topics: classification-models, julia, julia-package, machine-learning, machine-learning-algorithms, machine-learning-models, regression-models, relevance-vector-machine
- Language: Julia
- Homepage:
- Size: 248 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
# RelevanceVectorMachine.jl


A [relevance vector machine](http://proceedings.mlr.press/r4/tipping03a/tipping03a.pdf) implementation written in Julia.
## Installation
Use Julia's [Pkg](https://docs.julialang.org/en/v1/stdlib/Pkg/) module to install it:
```julia
import Pkg; Pkg.add("RelevanceVectorMachine.jl")
```## Quick Start
```julia
import RelevanceVectorMachine
using RDatasets
using StatsModelsboston_data = RDatasets.dataset("MASS", "Boston")
rvm = RelevanceVectorMachine.rvm(@formula(MedV ~ Rm), boston_data)
# Predict on new data
preds = RelevanceVectorMachine.predict(rvm, new_boston_data)
```See the [examples](https://github.com/svaniksharma/RelevanceVectorMachine.jl/tree/master/examples) folder for more.
## Contributing
Pull requests are welcome. For major changes, please open an issue first
to discuss what you would like to change.Please make sure to update tests as appropriate.
## License
[MIT](https://choosealicense.com/licenses/mit/)