Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/svip-lab/impersonator

PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis
https://github.com/svip-lab/impersonator

gan pose pytorch

Last synced: 1 day ago
JSON representation

PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Awesome Lists containing this project

README

        

# Impersonator
PyTorch implementation of our ICCV 2019 paper:

Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

**Please clone the newest codes.**

[[paper]](https://arxiv.org/pdf/1909.12224.pdf) [[website]](https://svip-lab.github.io/project/impersonator) [[Supplemental Material]](https://svip-lab.github.io/project_img/impersonator/4701-supp.pdf) [[Dataset]](https://svip-lab.github.io/dataset/iPER_dataset.html)














## Update News
- [x] 10/05/2019, optimize the minimal requirements of GPU memory (at least `3.8GB` available).

- [x] 10/24/2019, Imper-1.2.2, add the training document [train.md](./doc/train.md).

- [x] 07/04/2020, Add the [evaluation metrics](./thirdparty/his_evaluators/README.md) on iPER dataset.

## Getting Started
Python 3.6+, Pytorch 1.2, torchvision 0.4, cuda10.0, at least `3.8GB` GPU memory and other requirements.
All codes are tested on Linux Distributions (Ubutun 16.04 is recommended), and other platforms have not been tested yet.

### Requirements
``` bash
pip install -r requirements.txt
apt-get install ffmpeg
```

### Installation
```shell
cd thirdparty/neural_renderer
python setup.py install
```

### Download resources.
1. Download `pretrains.zip` from [OneDrive](https://1drv.ms/u/s!AjjUqiJZsj8whLNw4QyntCMsDKQjSg?e=L77Elv) or
[BaiduPan](https://pan.baidu.com/s/11S7Z6Jj3WAfVNxBWyBjW6w) and then move the pretrains.zip to
the `assets` directory and unzip this file.
```
wget -O assets/pretrains.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNw4QyntCMsDKQjSg?e=L77Elv
```

2. Download `checkpoints.zip` from [OneDrive](https://1drv.ms/u/s!AjjUqiJZsj8whLNyoEh67Uu0LlxquA?e=dkOnhQ) or
[BaiduPan](https://pan.baidu.com/s/1snolk6wphbuHtQ_DeSA06Q) and then
unzip the `checkpoints.zip` and move them to `outputs` directory.
```
wget -O outputs/checkpoints.zip https://1drv.ws/u/s!AjjUqiJZsj8whLNyoEh67Uu0LlxquA?e=dkOnhQ
```

3. Download `samples.zip` from [OneDrive](https://1drv.ms/u/s!AjjUqiJZsj8whLNz4BqnSgqrVwAXoQ?e=bC86db) or
[BaiduPan](https://pan.baidu.com/s/1xAI96709Gvqahq9uYAEXYA), and then
unzip the `samples.zip` and move them to `assets` directory.
```
wget -O assets/samples.zip "https://1drv.ws/u/s\!AjjUqiJZsj8whLNz4BqnSgqrVwAXoQ?e=bC86db"
```

### Running Demo
If you want to get the results of the demo shown on the webpage, you can run the following scripts.
The results are saved in `./outputs/results/demos`

1. Demo of Motion Imitation
```bash
python demo_imitator.py --gpu_ids 1
```

2. Demo of Appearance Transfer
```bash
python demo_swap.py --gpu_ids 1
```

3. Demo of Novel View Synthesis
```bash
python demo_view.py --gpu_ids 1
```

If you get the errors like `RuntimeError: CUDA out of memory`, please add the flag `--batch_size 1`, the minimal
GPU memory is 3.8 GB.

### Running custom examples (Details)
If you want to test other inputs (source image and reference images **from yourself**), here are some examples.
Please replace the `--ip YOUR_IP` and `--port YOUR_PORT` for
[Visdom](https://github.com/facebookresearch/visdom) visualization.

1. Motion Imitation
* source image from iPER dataset
```bash
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \
--src_path ./assets/src_imgs/imper_A_Pose/009_5_1_000.jpg \
--tgt_path ./assets/samples/refs/iPER/024_8_2 \
--bg_ks 13 --ft_ks 3 \
--has_detector --post_tune \
--save_res --ip YOUR_IP --port YOUR_PORT
```

* source image from DeepFashion dataset
```bash
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \
--src_path ./assets/src_imgs/fashion_woman/Sweaters-id_0000088807_4_full.jpg \
--tgt_path ./assets/samples/refs/iPER/024_8_2 \
--bg_ks 25 --ft_ks 3 \
--has_detector --post_tune \
--save_res --ip YOUR_IP --port YOUR_PORT
```

* source image from Internet
```bash
python run_imitator.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \
--src_path ./assets/src_imgs/internet/men1_256.jpg \
--tgt_path ./assets/samples/refs/iPER/024_8_2 \
--bg_ks 7 --ft_ks 3 \
--has_detector --post_tune --front_warp \
--save_res --ip YOUR_IP --port YOUR_PORT
```
2. Appearance Transfer

An example that source image from iPER and reference image from DeepFashion dataset.

```bash
python run_swap.py --gpu_ids 0 --model imitator --output_dir ./outputs/results/ \
--src_path ./assets/src_imgs/imper_A_Pose/024_8_2_0000.jpg \
--tgt_path ./assets/src_imgs/fashion_man/Sweatshirts_Hoodies-id_0000680701_4_full.jpg \
--bg_ks 13 --ft_ks 3 \
--has_detector --post_tune --front_warp --swap_part body \
--save_res --ip http://10.10.10.100 --port 31102
```
3. Novel View Synthesis
```bash
python run_view.py --gpu_ids 0 --model viewer --output_dir ./outputs/results/ \
--src_path ./assets/src_imgs/internet/men1_256.jpg \
--bg_ks 13 --ft_ks 3 \
--has_detector --post_tune --front_warp --bg_replace \
--save_res --ip http://10.10.10.100 --port 31102
```

If you get the errors like `RuntimeError: CUDA out of memory`, please add the flag `--batch_size 1`, the minimal
GPU memory is 3.8 GB.

The details of each running scripts are shown in [runDetails.md](doc/runDetails.md).
### Training from Scratch

* The details of training iPER dataset from scratch are shown in [train.md](./doc/train.md).

### Evaluation
Run ```./scripts/motion_imitation/evaluate.sh```.
The details of the evaluation on iPER dataset in [his_evaluators](./thirdparty/his_evaluators/README.md).

## Announcement
In our paper, the results of LPIPS reported in Table 1, are calculated by **1 – distance score**;
thereby, the larger is more similar between two images. The beginning intention of using **1 – distance score** is that it is more accurate to meet the definition of **Similarity** in LPIPS.

However, most other papers use the original definition that LPIPS = distance score;
therefore, to eliminate the ambiguity and make it consistent with others,
we update the results in Table 1 with the original definition in the [latest paper](https://arxiv.org/pdf/1909.12224.pdf).

## Citation
![thunmbnail](assets/thumbnail.jpg)
```
@InProceedings{lwb2019,
title={Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis},
author={Wen Liu and Zhixin Piao, Min Jie, Wenhan Luo, Lin Ma and Shenghua Gao},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}
```