Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/swapnanildutta/airline-tweets-visualization-web-app
This application is a Streamlit dashboard to analyze the sentiment of Tweets on Airlines.
https://github.com/swapnanildutta/airline-tweets-visualization-web-app
python python3 streamlit streamlit-dashboard streamlit-webapp visualization webapp
Last synced: 2 days ago
JSON representation
This application is a Streamlit dashboard to analyze the sentiment of Tweets on Airlines.
- Host: GitHub
- URL: https://github.com/swapnanildutta/airline-tweets-visualization-web-app
- Owner: swapnanildutta
- License: mit
- Created: 2020-08-18T16:15:01.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-03-09T23:58:01.000Z (almost 2 years ago)
- Last Synced: 2024-11-10T19:50:55.609Z (2 months ago)
- Topics: python, python3, streamlit, streamlit-dashboard, streamlit-webapp, visualization, webapp
- Language: Python
- Homepage: https://airline-tweet-stat-app.herokuapp.com/
- Size: 2.7 MB
- Stars: 1
- Watchers: 2
- Forks: 1
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Airline-Tweets-Visualization-Web-App
[![HitCount](https://hits.dwyl.com/swapnanildutta/Airline-Tweets-Visualization-Web-App.svg)](http://hits.dwyl.com/swapnanildutta/Airline-Tweets-Visualization-Web-App)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)## How to use
### Locally :
- Fork this repository and download using *git clone*.
```bash
$git clone https://github.com//Airline-Tweets-Visualization-Web-App.git
```
- Install all the dependencies.
```powershell
$pip install -r requirements.txt
```
or,
```bash
$pip3 install -r requirements.txt
```
- And, finally run the [app.py](app.py) file.
```bash
$streamlit run app.py
```### Remotely :
- Fork the repository and make necessary changes.
- Connect the web app to the repository.## Output
### Tweets comparison by sentiment
### Tweets presented on map based on location and time.
### Raw Data
### Tweets comparison by Airline companies based on sentiment.
### WordCloud generated by Tweets of a particular Sentiment.