An open API service indexing awesome lists of open source software.

https://github.com/sweetice/mepe

Official implementation of MEPE
https://github.com/sweetice/mepe

Last synced: 7 months ago
JSON representation

Official implementation of MEPE

Awesome Lists containing this project

README

          

# Code for paper: A Minimalist Ensemble Policy Evaluation Operator for Deep Reinforcement Learning

## Install

### Optionally: Create a new python virtual environment

We recommend readers use the anaconda tool.

```shell
conda create -n mepe python=3.7.4
```

And then activate the created environment

```shell
conda activate mepe
```

###
Firstly, install the requirements.txt

```shell
pip install -r requirements.txt
```

The required python package is as follows:
```shell
torch==1.7.1+cu101
numpy==1.18.1
gym==0.12.1
pybullet==2.7.1
roboschool==1.0.48
pandas==1.0.1
tqdm
scikit-image
tensorboard
torch
torchvision
gym==0.25.1
patchelf
termcolor
seaborn==0.9.0
opencv-python
kornia
```

## Run

For running ME-DDPG:

```shell
cd Bullet
python main_me_ddpg.py --env HopperBulletEnv-v0 --seed 0 --dropout_p 0.1
```

```bash
(mepe) python main_me_ddpg.py --env HopperBulletEnv-v0 --seed 0 --dropout_p 0.1

---------------------------------------
Policy: ME-DDPG, Env: HopperBulletEnv-v0, Seed: 0
---------------------------------------
3%|██▍ | 28308/1000000 [00:28<59:30, 272.17it/s]
```

For running ME-SAC:
```shell
cd Bullet
python main_me_sac.py --env HopperBulletEnv-v0 --seed 0 --dropout_p 0.1
```
```bash
(mepe) python main_me_sac.py --env HopperBulletEnv-v0 --seed 0 --dropout_p 0.1
---------------------------------------
Policy: ME-SAC, Env: HopperBulletEnv-v0, Seed: 0
---------------------------------------
3%|██▌ | 30202/1000000 [00:47<1:36:08, 168.12it/s]
```

For running ME-CURL
```shell
cd Atari
python main.py --game=ms_pacman
```

```shell
(mepe) python main.py --game=ms_pacman
Algorithm name: mepe
2%|█▍ | 1703/100000 [00:11<1:22:28, 19.86it/s]
```