Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sweta2501/netflix_dataanalysis
With the help of Netflix Data, I have done some Data Analysis.
https://github.com/sweta2501/netflix_dataanalysis
data-analysis data-science jupyter-notebook python
Last synced: 1 day ago
JSON representation
With the help of Netflix Data, I have done some Data Analysis.
- Host: GitHub
- URL: https://github.com/sweta2501/netflix_dataanalysis
- Owner: Sweta2501
- Created: 2024-03-14T06:39:18.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-03-15T12:52:28.000Z (8 months ago)
- Last Synced: 2024-03-15T14:05:19.833Z (8 months ago)
- Topics: data-analysis, data-science, jupyter-notebook, python
- Language: Jupyter Notebook
- Homepage:
- Size: 1.42 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Netflix Dataset Analysis
## Data Exploration
- **head()**: Displays the first few rows of the dataset.
- **tail()**: Displays the last few rows of the dataset.
- **shape**: Returns the dimensions of the dataset (number of rows and columns).
- **size**: Returns the total number of elements in the dataset.
- **columns**: Returns the column names of the dataset.
- **dtypes**: Returns the data types of each column in the dataset.
- **info()**: Provides a concise summary of the DataFrame.## Data Cleaning
- **isnull()**: Identifies missing values in the dataset.
- **dropna()**: Removes rows with missing values (by default).## Data Transformation
- **to_datetime()**: Converts a string or numeric column to datetime format.
- **str.contains()**: Filters rows based on patterns within a string column.
- **str.split()**: Splits a string column into separate values based on a delimiter.## Data Analysis
- **value_counts()**: Returns the number of times each unique value appears in a column.
- **groupby()**: Groups the dataset by one or more columns and allows for aggregate operations on each group.
- **countplot()**: Creates a count plot to visualize the number of times each unique value appears in a categorical column.
- **unique()**: Returns the unique values in a column.
- **nunique()**: Returns the number of unique values in a column.
- **max()**, **min()**, **mean()**: Return the maximum, minimum, and mean values of a numeric column.