Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/swintransformer/swin-transformer-object-detection
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.
https://github.com/swintransformer/swin-transformer-object-detection
cascade mask-rcnn mscoco object-detection reppoints swin swin-transformer
Last synced: 3 months ago
JSON representation
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.
- Host: GitHub
- URL: https://github.com/swintransformer/swin-transformer-object-detection
- Owner: SwinTransformer
- License: apache-2.0
- Fork: true (open-mmlab/mmdetection)
- Created: 2021-04-12T11:46:05.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2023-04-09T13:51:08.000Z (almost 2 years ago)
- Last Synced: 2024-09-30T13:43:11.293Z (3 months ago)
- Topics: cascade, mask-rcnn, mscoco, object-detection, reppoints, swin, swin-transformer
- Language: Python
- Homepage: https://arxiv.org/abs/2103.14030
- Size: 19.9 MB
- Stars: 1,786
- Watchers: 22
- Forks: 377
- Open Issues: 142
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: .github/CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# Swin Transformer for Object Detection
This repo contains the supported code and configuration files to reproduce object detection results of [Swin Transformer](https://arxiv.org/pdf/2103.14030.pdf). It is based on [mmdetection](https://github.com/open-mmlab/mmdetection).
## Updates
***05/11/2021*** Models for [MoBY](https://github.com/SwinTransformer/Transformer-SSL) are released
***04/12/2021*** Initial commits
## Results and Models
### Mask R-CNN
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 1x | 43.7 | 39.8 | 48M | 267G | [config](configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/mask_rcnn_swin_tiny_patch4_window7_1x.log.json)/[baidu](https://pan.baidu.com/s/1bYZk7BIeFEozjRNUesxVWg) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/mask_rcnn_swin_tiny_patch4_window7_1x.pth)/[baidu](https://pan.baidu.com/s/19UOW0xl0qc-pXQ59aFKU5w) |
| Swin-T | ImageNet-1K | 3x | 46.0 | 41.6 | 48M | 267G | [config](configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_tiny_patch4_window7.log.json)/[baidu](https://pan.baidu.com/s/1Te-Ovk4yaavmE4jcIOPAaw) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_tiny_patch4_window7.pth)/[baidu](https://pan.baidu.com/s/1YpauXYAFOohyMi3Vkb6DBg) |
| Swin-S | ImageNet-1K | 3x | 48.5 | 43.3 | 69M | 359G | [config](configs/swin/mask_rcnn_swin_small_patch4_window7_mstrain_480-800_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_small_patch4_window7.log.json)/[baidu](https://pan.baidu.com/s/1ymCK7378QS91yWlxHMf1yw) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/mask_rcnn_swin_small_patch4_window7.pth)/[baidu](https://pan.baidu.com/s/1V4w4aaV7HSjXNFTOSA6v6w) |### Cascade Mask R-CNN
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 1x | 48.1 | 41.7 | 86M | 745G | [config](configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_1x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/cascade_mask_rcnn_swin_tiny_patch4_window7_1x.log.json)/[baidu](https://pan.baidu.com/s/1x4vnorYZfISr-d_VUSVQCA) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/cascade_mask_rcnn_swin_tiny_patch4_window7_1x.pth)/[baidu](https://pan.baidu.com/s/1vFwbN1iamrtwnQSxMIW4BA) |
| Swin-T | ImageNet-1K | 3x | 50.4 | 43.7 | 86M | 745G | [config](configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_tiny_patch4_window7.log.json)/[baidu](https://pan.baidu.com/s/1GW_ic617Ak_NpRayOqPSOA) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_tiny_patch4_window7.pth)/[baidu](https://pan.baidu.com/s/1i-izBrODgQmMwTv6F6-x3A) |
| Swin-S | ImageNet-1K | 3x | 51.9 | 45.0 | 107M | 838G | [config](configs/swin/cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_small_patch4_window7.log.json)/[baidu](https://pan.baidu.com/s/17Vyufk85vyocxrBT1AbavQ) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_small_patch4_window7.pth)/[baidu](https://pan.baidu.com/s/1Sv9-gP1Qpl6SGOF6DBhUbw) |
| Swin-B | ImageNet-1K | 3x | 51.9 | 45.0 | 145M | 982G | [config](configs/swin/cascade_mask_rcnn_swin_base_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_base_patch4_window7.log.json)/[baidu](https://pan.baidu.com/s/1UZAR39g-0kE_aGrINwfVHg) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.2/cascade_mask_rcnn_swin_base_patch4_window7.pth)/[baidu](https://pan.baidu.com/s/1tHoC9PMVnldQUAfcF6FT3A) |### RepPoints V2
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 3x | 50.0 | - | 45M | 283G | [config](configs/swin/reppoitsv2_swin_tiny_patch4_window7_mstrain_480_960_giou_gfocal_bifpn_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.9/reppointsv2_swin_tiny_patch4_window7_3x.log.json) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.9/reppointsv2_swin_tiny_patch4_window7_3x.pth) |### Mask RepPoints V2
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 3x | 50.4 | 43.8 | 47M | 292G | [config](configs/swin/mask_reppoitsv2_swin_tiny_patch4_window7_mstrain_480_960_giou_gfocal_bifpn_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.9/mask_reppointsv2_swin_tiny_patch4_window7_3x.log.json) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.9/mask_reppointsv2_swin_tiny_patch4_window7_3x.pth) |**Notes**:
- **Pre-trained models can be downloaded from [Swin Transformer for ImageNet Classification](https://github.com/microsoft/Swin-Transformer)**.
- Access code for `baidu` is `swin`.## Results of MoBY with Swin Transformer
### Mask R-CNN
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 1x | 43.6 | 39.6 | 48M | 267G | [config](configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_mask_rcnn_swin_tiny_patch4_window7_1x.log.json)/[baidu](https://pan.baidu.com/s/1P5gCIfLUQ64jbVMOom0H3w) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_mask_rcnn_swin_tiny_patch4_window7_1x.pth)/[baidu](https://pan.baidu.com/s/1xGRihuIrGVreFKn5eJ6oTg) |
| Swin-T | ImageNet-1K | 3x | 46.0 | 41.7 | 48M | 267G | [config](configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_mask_rcnn_swin_tiny_patch4_window7_3x.log.json)/[baidu](https://pan.baidu.com/s/17WAhUmhAam1of3hXOu-wtA) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_mask_rcnn_swin_tiny_patch4_window7_3x.pth)/[baidu](https://pan.baidu.com/s/1MSj8cC1wlQU1QaXCdKrzeA) |### Cascade Mask R-CNN
| Backbone | Pretrain | Lr Schd | box mAP | mask mAP | #params | FLOPs | config | log | model |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| Swin-T | ImageNet-1K | 1x | 48.1 | 41.5 | 86M | 745G | [config](configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_1x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_cascade_mask_rcnn_swin_tiny_patch4_window7_1x.log.json)/[baidu](https://pan.baidu.com/s/1eOdq1rvi0QoXjc7COgiM7A) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_cascade_mask_rcnn_swin_tiny_patch4_window7_1x.pth)/[baidu](https://pan.baidu.com/s/1-gbY-LExbf0FgYxWWs8OPg) |
| Swin-T | ImageNet-1K | 3x | 50.2 | 43.5 | 86M | 745G | [config](configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_cascade_mask_rcnn_swin_tiny_patch4_window7_3x.log.json)/[baidu](https://pan.baidu.com/s/1zEFXHYjEiXUCWF1U7HR5Zg) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_cascade_mask_rcnn_swin_tiny_patch4_window7_3x.pth)/[baidu](https://pan.baidu.com/s/1FMmW0GOpT4MKsKUrkJRgeg) |**Notes:**
- The drop path rate needs to be tuned for best practice.
- MoBY pre-trained models can be downloaded from [MoBY with Swin Transformer](https://github.com/SwinTransformer/Transformer-SSL).## Usage
### Installation
Please refer to [get_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md) for installation and dataset preparation.
### Inference
```
# single-gpu testing
python tools/test.py --eval bbox segm# multi-gpu testing
tools/dist_test.sh --eval bbox segm
```### Training
To train a detector with pre-trained models, run:
```
# single-gpu training
python tools/train.py --cfg-options model.pretrained= [model.backbone.use_checkpoint=True] [other optional arguments]# multi-gpu training
tools/dist_train.sh --cfg-options model.pretrained= [model.backbone.use_checkpoint=True] [other optional arguments]
```
For example, to train a Cascade Mask R-CNN model with a `Swin-T` backbone and 8 gpus, run:
```
tools/dist_train.sh configs/swin/cascade_mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py 8 --cfg-options model.pretrained=
```**Note:** `use_checkpoint` is used to save GPU memory. Please refer to [this page](https://pytorch.org/docs/stable/checkpoint.html) for more details.
### Apex (optional):
We use apex for mixed precision training by default. To install apex, run:
```
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
If you would like to disable apex, modify the type of runner as `EpochBasedRunner` and comment out the following code block in the [configuration files](configs/swin):
```
# do not use mmdet version fp16
fp16 = None
optimizer_config = dict(
type="DistOptimizerHook",
update_interval=1,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
use_fp16=True,
)
```## Citing Swin Transformer
```
@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}
```## Other Links
> **Image Classification**: See [Swin Transformer for Image Classification](https://github.com/microsoft/Swin-Transformer).
> **Semantic Segmentation**: See [Swin Transformer for Semantic Segmentation](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation).
> **Self-Supervised Learning**: See [MoBY with Swin Transformer](https://github.com/SwinTransformer/Transformer-SSL).
> **Video Recognition**, See [Video Swin Transformer](https://github.com/SwinTransformer/Video-Swin-Transformer).