Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/syamkakarla98/hyperspectral_image_analysis_simplified
The repository contains the implementation of different machine learning techniques such as classification and clustering on Hyperspectral and Satellite Imagery.
https://github.com/syamkakarla98/hyperspectral_image_analysis_simplified
classification data-analysis data-science dimensionality-reduction hacktoberfest hyperspectral hyperspectral-image-classification hyperspectral-images indian-pines-dataset machine-learning matplotlib-pyplot pandas plotly python python3 remote-sensing satellite-imagery satellite-images tensorflow turorial
Last synced: 7 days ago
JSON representation
The repository contains the implementation of different machine learning techniques such as classification and clustering on Hyperspectral and Satellite Imagery.
- Host: GitHub
- URL: https://github.com/syamkakarla98/hyperspectral_image_analysis_simplified
- Owner: syamkakarla98
- License: gpl-3.0
- Created: 2019-12-13T05:17:07.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2023-07-06T21:27:28.000Z (over 1 year ago)
- Last Synced: 2025-01-08T12:07:25.717Z (14 days ago)
- Topics: classification, data-analysis, data-science, dimensionality-reduction, hacktoberfest, hyperspectral, hyperspectral-image-classification, hyperspectral-images, indian-pines-dataset, machine-learning, matplotlib-pyplot, pandas, plotly, python, python3, remote-sensing, satellite-imagery, satellite-images, tensorflow, turorial
- Language: Jupyter Notebook
- Homepage:
- Size: 21.4 MB
- Stars: 231
- Watchers: 2
- Forks: 48
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- Contributing: Contributing.md
- License: LICENSE
Awesome Lists containing this project
README
# Hyper Spectral Image(HSI) Analysis Simplified
![Python](https://img.shields.io/badge/Python-3.6-green.svg)
![Stars](https://img.shields.io/github/stars/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![Forks]( https://img.shields.io/github/forks/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![issued](https://img.shields.io/github/issues/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![License](https://img.shields.io/github/license/syamkakarla98/Hyperspectral_Image_Analysis_Simplified)
#### The repository contains the implementation of different machine learning techniques on Hyperspectral and satellite Imagery analysis. Find more articles from [here](https://syamkakarla.medium.com/).1.[ **Basics**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Basics.ipynb) - This notebook fatures:
* **Introduction**
* **Downloading HSI**
* **Reading** the hyperspecral image.
* **Visualizing the bands** of the hyperspectral image.
* **Visualizing ground truth** of the image.
* **Extracting pixels** of the hyperspectral image.
* **Visualizing spectral signatures** of the hyperspectral image.2.[ **Data Analysis**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Data%20Analysis.ipynb) - This notebook fatures data anlysis of the indian pines hyperspectral image:
* **Visualizing pixels** of the hyperspectral image.
* **Bar plot** w.r.t _class labels_ of the hyperspectral image.
* **Box Plot** w.r.t the _class labels_ and _bands_ of hyperspecral image.
* **Distribution Plot** w.r.t the _bands_ of hyperspecral image.3.[**Exploratory Data Analysis (EDA) on Satellite Imagery Using EarthPy**](https://towardsdatascience.com/exploratory-data-analysis-eda-on-satellite-imagery-using-earthpy-c0e186fe4293)
4.**Dimensionality Reduction**
* Check this article entitled [Dimensionality Reduction in Hyperspectral Images using Python](https://towardsdatascience.com/dimensionality-reduction-in-hyperspectral-images-using-python-611b40b6accc) and [*code*](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Articles/Dimensionality_Reduction_on%C2%A0HSI_using_PCA.ipynb).
* [ **PCA + SVM**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/PCA%2BSVM.ipynb) - This notebook implements the following _machine learning_ techniques on the indian pines dataset.
* **Dimensionality Rreduction**: The _principal component analysis(PCA)_ is used to reduce the dimensions of the dataset.
* **Classifier**: The _support vector machine(SVM)_ classifier is used to classsify the pixels of the HSI with classification report and the confusion matrix, classification map of the classifier is visualized.
* [ **Kernel PCA + SVM**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/kernel%20PCA%2BSVM.ipynb) - This notebook implements the following _machine learning_ techniques on the indian pines dataset.
* **Dimensionality Rreduction**: The _Kernel principal component analysis(PCA)_ with '**rbf kernel**' is used to reduce the dimensionality of the dataset.
* **Classifier**: The _support vector machine(SVM)_ classifier is used to classsify the pixels of the HSI with classification report and the confusion matrix, classification map of the classifier is visualized.## Do give a star if you like the repository.