Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/syamkakarla98/hyperspectral_image_analysis_simplified

The repository contains the implementation of different machine learning techniques such as classification and clustering on Hyperspectral and Satellite Imagery.
https://github.com/syamkakarla98/hyperspectral_image_analysis_simplified

classification data-analysis data-science dimensionality-reduction hacktoberfest hyperspectral hyperspectral-image-classification hyperspectral-images indian-pines-dataset machine-learning matplotlib-pyplot pandas plotly python python3 remote-sensing satellite-imagery satellite-images tensorflow turorial

Last synced: 7 days ago
JSON representation

The repository contains the implementation of different machine learning techniques such as classification and clustering on Hyperspectral and Satellite Imagery.

Awesome Lists containing this project

README

        

# Hyper Spectral Image(HSI) Analysis Simplified
![Python](https://img.shields.io/badge/Python-3.6-green.svg)
![Stars](https://img.shields.io/github/stars/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![Forks]( https://img.shields.io/github/forks/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![issued](https://img.shields.io/github/issues/syamkakarla98/Hyper-Spectral-Image-Analysis-Simplified)
![License](https://img.shields.io/github/license/syamkakarla98/Hyperspectral_Image_Analysis_Simplified)


#### The repository contains the implementation of different machine learning techniques on Hyperspectral and satellite Imagery analysis. Find more articles from [here](https://syamkakarla.medium.com/).

1.[ **Basics**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Basics.ipynb) - This notebook fatures:
* **Introduction**
* **Downloading HSI**
* **Reading** the hyperspecral image.
* **Visualizing the bands** of the hyperspectral image.
* **Visualizing ground truth** of the image.
* **Extracting pixels** of the hyperspectral image.
* **Visualizing spectral signatures** of the hyperspectral image.

2.[ **Data Analysis**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Data%20Analysis.ipynb) - This notebook fatures data anlysis of the indian pines hyperspectral image:
* **Visualizing pixels** of the hyperspectral image.
* **Bar plot** w.r.t _class labels_ of the hyperspectral image.
* **Box Plot** w.r.t the _class labels_ and _bands_ of hyperspecral image.
* **Distribution Plot** w.r.t the _bands_ of hyperspecral image.

3.[**Exploratory Data Analysis (EDA) on Satellite Imagery Using EarthPy**](https://towardsdatascience.com/exploratory-data-analysis-eda-on-satellite-imagery-using-earthpy-c0e186fe4293)

4.**Dimensionality Reduction**
* Check this article entitled [Dimensionality Reduction in Hyperspectral Images using Python](https://towardsdatascience.com/dimensionality-reduction-in-hyperspectral-images-using-python-611b40b6accc) and [*code*](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/Articles/Dimensionality_Reduction_on%C2%A0HSI_using_PCA.ipynb).


* [ **PCA + SVM**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/PCA%2BSVM.ipynb) - This notebook implements the following _machine learning_ techniques on the indian pines dataset.
* **Dimensionality Rreduction**: The _principal component analysis(PCA)_ is used to reduce the dimensions of the dataset.
* **Classifier**: The _support vector machine(SVM)_ classifier is used to classsify the pixels of the HSI with classification report and the confusion matrix, classification map of the classifier is visualized.

* [ **Kernel PCA + SVM**](https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified/blob/master/kernel%20PCA%2BSVM.ipynb) - This notebook implements the following _machine learning_ techniques on the indian pines dataset.

* **Dimensionality Rreduction**: The _Kernel principal component analysis(PCA)_ with '**rbf kernel**' is used to reduce the dimensionality of the dataset.
* **Classifier**: The _support vector machine(SVM)_ classifier is used to classsify the pixels of the HSI with classification report and the confusion matrix, classification map of the classifier is visualized.

## Do give a star if you like the repository.