https://github.com/syed007hassan/document-querying-with-vectordb
Document Querying with LLMs - Google PaLM API: Semantic Search With LLM Embeddings
https://github.com/syed007hassan/document-querying-with-vectordb
chroma document-retrieval embeddings palm-api pdf-encoding vectordb
Last synced: 6 months ago
JSON representation
Document Querying with LLMs - Google PaLM API: Semantic Search With LLM Embeddings
- Host: GitHub
- URL: https://github.com/syed007hassan/document-querying-with-vectordb
- Owner: Syed007Hassan
- Created: 2023-09-03T20:22:09.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-12-14T17:59:09.000Z (almost 2 years ago)
- Last Synced: 2025-03-25T00:41:37.100Z (6 months ago)
- Topics: chroma, document-retrieval, embeddings, palm-api, pdf-encoding, vectordb
- Language: Python
- Homepage: https://medium.com/@syed007hassan/9ba73a935e5
- Size: 395 KB
- Stars: 9
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Document-Querying-With-VectorDB
- Follow [this guide](https://medium.com/@syed007hassan/9ba73a935e5) to understand how document retrieval and question-answering work with LLMs and how to apply LLMs to your domain-specific data.
- Example API
