Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/sympy/quantum_notebooks
Jupyter Notebooks that demonstrate SymPy's symbolic quantum mechanics package.
https://github.com/sympy/quantum_notebooks
binder jupyter-notebooks python quantum-computing quantum-mechanics sympy
Last synced: 2 months ago
JSON representation
Jupyter Notebooks that demonstrate SymPy's symbolic quantum mechanics package.
- Host: GitHub
- URL: https://github.com/sympy/quantum_notebooks
- Owner: sympy
- License: other
- Created: 2017-10-04T17:54:57.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2021-10-14T16:23:34.000Z (over 3 years ago)
- Last Synced: 2024-10-29T14:38:26.522Z (3 months ago)
- Topics: binder, jupyter-notebooks, python, quantum-computing, quantum-mechanics, sympy
- Language: Jupyter Notebook
- Homepage:
- Size: 389 KB
- Stars: 62
- Watchers: 5
- Forks: 18
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Sympy's Symbolic Quantum Mechanics Package
[SymPy](http://www.sympy.org/en/index.html) is a symbolic mathematics library for the [Python](https://www.python.org/)
programming language. SymPy has a subpackage, `sympy.physics.quantum` that implements a general symbolic
quantum mechanics package for Python, and a number of specific
quantum system on top of that:* Quantum angular momentum.
* Quantum computing.
* Simple harmonic oscillator.This repository contains a set of Jupyter Notebooks that
demonstrate the capabilities of `sympy.physics.quantum`.You can browse static version of these notebooks here on GitHub, or click the `binder` badge below to launch a live Jupyter Notebook server with the notebooks in this repo.
[![Binder](https://beta.mybinder.org/badge.svg)](https://beta.mybinder.org/v2/gh/sympy/quantum_notebooks/master)
## Example
Here is an example of using `sympy.physics.quantum` to create a 3
qubit [Quantum Fourier Transform](https://en.wikipedia.org/wiki/Quantum_Fourier_transform),
decompose the circuit into primitive gates, and then visualize the circuit:![Quantum Fourier Transform](images/qft_example.png)