Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/synacktraa/buildantic

JSON schema generation and data validation, with native support for LLM function-calling formats
https://github.com/synacktraa/buildantic

Last synced: about 1 month ago
JSON representation

JSON schema generation and data validation, with native support for LLM function-calling formats

Awesome Lists containing this project

README

        

# Buildantic: A library for JSON schema generation and data validation, with native support for LLM function-calling formats.

---



buildantic version


buildantic CI status


buildantic codecov


buildantic license

Buildantic streamlines the process of generating schemas from types and OpenAPI specification operations, as well as validating data against these schemas.

Beyond standard JSON Schema generation, It facilitates the creation of schema formats tailored for Large Language Model (LLM) function calling. The supported formats include `OpenAI` (compatible with most function-calling LLMs), `Anthropic`, and `Gemini`.

- [Type support](#working-with-types)
- [OpenAPI specification support](#working-with-openapi-specification)

`Buildantic` is highly inspired from the talk "Pydantic is all you need" by [Jason Liu](https://github.com/jxnl), author of Instructor library.

## Getting Started

```
pip install -U buildantic
```

### Working with types

`TypeDescriptor` utilizes pydantic's `TypeAdapter` internally. The schema generated by the adapter is updated with docstring recursively.
Any type supported by pydantic will work with this descriptor.

#### Descripting a simple type

```python
import typing as t

from buildantic import TypeDescriptor

descriptor = TypeDescriptor(t.List[str])
```

- Get standard JsON schema

```python
print(descriptor.schema)
"""{'items': {'type': 'string'}, 'type': 'array'}"""
```

- Get function calling schema

> As function-calling only accepts object input, the simple type is transformed into object type with `input` being the only property key.

```python
print(descriptor.openai_schema)
"""
{
'name': 'List',
'parameters': {
'type': 'object',
'properties': {
'input': {
'items': {'type': 'string'}, 'type': 'array'
}
}
}
}
"""
```

- Validating a python object

```python
print(descriptor.validate_python(["name", "age"]))
# OR output generated from function-calling schema
print(descriptor.validate_python({"input": ["name", "age"]}))
"""['name', 'age']"""
```

- Validating a JsON object

```python
print(descriptor.validate_json('["name", "age"]'))
# OR output generated from function-calling schema
print(descriptor.validate_json('{"input": ["name", "age"]}'))
"""['name', 'age']"""
```

#### Descripting a simple type with custom name and description

> Annonate the simple type (non-object type) with pydantic's `FieldInfo` to add name and description

```python
import typing as t

from buildantic import TypeDescriptor
from pydantic.fields import Field

descriptor = TypeDescriptor[t.List[str]](
t.Annotated[t.List[str], Field(alias="strings", description="List of string")]
)
print(descriptor.schema)
"""{'items': {'type': 'string'}, 'type': 'array'}"""

print(descriptor.openai_schema)
"""
{
"name": "strings",
"description": "List of string",
"parameters": {
"type": "object",
"properties": {
"input": {"type": "array", "items": {"type": "string"}}
},
"required": ["input"]
}
}
"""

print(descriptor.validate_python(["name", "age"]))
"""['name', 'age']"""

print(descriptor.validate_json('{"input": ["name", "age"]}'))
"""['name', 'age']"""
```

#### Descripting an object type

> An object type refers to type with properties. `TypedDict`, pydantic model, dataclasses and functions are some examples of it.

> `TypeDescriptor` aliased as `descript` can be used as a decorator.

```python
from buildantic import descript
from typing import Any, Dict, Literal, Tuple

@descript # same as TypeDescriptor(create_user)
async def create_user(
name: str, age: int, role: Literal["developer", "tester"] = "tester"
) -> Tuple[bool, Dict[str, Any]]:
"""
Create a new user

:param name: Name of the user
:param age: Age of the user
:param role: Role to assign.
"""
return (True, {"metadata": [name, age, role]})

print(create_user.gemini_schema)
"""
{
"name": "create_user",
"description": "Create a new user",
"parameters": {
"type": "object",
"properties": {
"name": {
"type": "string", "description": "Name of the user"
},
"age": {
"type": "integer", "description": "Age of the user"
},
"role": {
"type": "string",
"description": "Role to assign.",
"enum": ["developer", "tester"],
"format": "enum"
}
},
"required": ["name", "age"]
}
}
"""

import asyncio

print(asyncio.run(create_user.validate_python({
"name": "synacktra", "age": 21, "role": "developer"
})))
"""(True, {'metadata': ['synacktra', 21, 'developer']})"""
```

#### Creating a registry of type descriptors

```python
from typing import Tuple, Literal

from pydantic import BaseModel
from buildantic import Registry

registry = Registry()

@registry.register
class UserInfo(BaseModel):
"""
User Information

:param name: Name of the user
:param age: Age of the user
:param role: Role to assign.
"""
name: str
age: int
role: Literal["developer", "tester"] = "tester"

@registry.register
def get_coordinates(location: str) -> Tuple[float, float]:
"""Get coordinates of a location."""
return (48.858370, 2.2944813)
```

- Getting schema list in different formats

```python
print(registry.schema)
print(registry.openai_schema)
print(registry.anthropic_schema)
print(registry.gemini_schema)
```

- Validating a python object

```python
print(registry.validate_python(id="UserInfo", obj={"name": "synacktra", "age": 21}))
"""name='synacktra' age=21 role='tester'"""
print(registry.validate_python(id="get_coordinates", obj={"location": "eiffeltower"}))
"""(48.85837, 2.2944813)"""
```

- Validating a JsON object

```python
print(registry.validate_json(id="UserInfo", data='{"name": "synacktra", "age": 21}'))
"""name='synacktra' age=21 role='tester'"""
print(registry.validate_json(id="get_coordinates", data='{"location": "eiffeltower"}'))
"""(48.85837, 2.2944813)"""
```

- Accessing descriptor from registry instance

```python
get_coords_descriptor = registry["get_coordinates"]
```

### Working with OpenAPI Specification

OpenAPI operations are loaded as operation descriptors in the `OpenAPIRegistry`.

Validation methods returns a `RequestModel`, after which you can use your favorite
http client library to finally make request to the API.

- Loading the specification as a registyr

```python
from buildantic.registry import OpenAPIRegistry
openapi_registry = OpenAPIRegistry.from_file("/path/to/petstore-v3.json_or_yml")
# or
openapi_registry = OpenAPIRegistry.from_url(
"https://raw.githubusercontent.com/OAI/OpenAPI-Specification/refs/heads/main/examples/v3.0/petstore.json"
)
```

- Get list of operations

```python
print(openapi_registry.ids)
"""['listPets', 'createPets', 'showPetById']"""
```

- Accessing specific operation descriptor from registry

```python
print(openapi_registry["listPets"].schema)
"""
{
'type': 'object',
'description': 'List all pets',
'properties': {
'limit': {
'type': 'integer',
'maximum': 100,
'format': 'int32',
'description': 'How many items to return at one time (max 100)'
}
}
}
"""

print(openapi_registry["createPets"].schema)
{
'type': 'object',
'description': 'Create a pet',
'properties': {
'requestBody': {
'type': 'object',
'properties': {
'id': {'type': 'integer', 'format': 'int64'},
'name': {'type': 'string'},
'tag': {'type': 'string'}
}
}
},
'required': ['requestBody']
}
```

- Getting schema list in different formats

```python
print(registry.schema)
print(registry.openai_schema)
print(registry.anthropic_schema)
print(registry.gemini_schema)
```

- Validating a python object

```python
print(openapi_registry.validate_python(id="listPets", obj={"limit": 99}))
"""
path='/pets' method='get' queries={'limit': 99} encoded_query='limit=99' headers=None cookies=None body=None
"""
print(openapi_registry.validate_python(id="listPets", obj={"limit": 101}))
# This will raise `jsonschema.exceptions.ValidationError` exception
```

- Validating a JsON object

```python
print(openapi_registry.validate_json(
id="createPets",
data='{"requestBody": {"id": 12, "name": "rocky", "tag": "dog"}}'
))
"""
path='/pets' method='post' queries=None encoded_query=None headers=None cookies=None body={'id': 12, 'name': 'rocky', 'tag': 'dog'}
"""
```