Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/synlp/ChiMed-GPT
ChiMed-GPT is a Chinese medical large language model (LLM) built by continually training Ziya-v2 on Chinese medical data, where pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF) are comprehensively performed on it.
https://github.com/synlp/ChiMed-GPT
Last synced: 2 months ago
JSON representation
ChiMed-GPT is a Chinese medical large language model (LLM) built by continually training Ziya-v2 on Chinese medical data, where pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF) are comprehensively performed on it.
- Host: GitHub
- URL: https://github.com/synlp/ChiMed-GPT
- Owner: synlp
- License: mit
- Created: 2023-09-13T02:45:34.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-29T11:54:50.000Z (about 1 year ago)
- Last Synced: 2024-08-02T06:16:51.334Z (5 months ago)
- Homepage:
- Size: 1.31 MB
- Stars: 62
- Watchers: 6
- Forks: 6
- Open Issues: 3
-
Metadata Files:
- Readme: README-EN.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Domain-LLM - ChiMed-GPT
- Awesome-Medical-Healthcare-Dataset-For-LLM - ChiMed-GPT - GPT是一个开源中文医学大语言模型,通过在中文医学数据上持续训练 Ziya-v2 构建而成,其中涵盖了预训练、有监督微调 (SFT) 和来自人类反馈的强化学习 (RLHF) 等训练过程。 | (Models / 英文)
README
[**🇨🇳中文**](./README.md) | [**🌐English**](./README-EN.md)
# ChiMed-GPT
ChiMed-GPT is a Chinese medical large language model (LLM) built by continually training [Ziya-v2](https://arxiv.org/abs/2311.03301) on Chinese medical data, where pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF) are comprehensively performed on it.
More information about the model is coming soon.
If you have any questions and suggestions about future versions of ChiMed-GPT, please leave comments in `issues`.
## Citation
If you use or extend our work, please cite the following [paper](https://arxiv.org/abs/2311.06025):
```
@article{USTC-ChiMed-GPT,
title="{ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences}",
author={Yuanhe Tian, Ruyi Gan, Yan Song, Jiaxing Zhang, Yongdong Zhang},
journal={arXiv preprint arXiv:2311.06025},
year={2023},
}
```## Training Process
The overall training process of ChiMed-GPT is illustrated in the following figure.
![](docs/figures/architecture.png)
## Results
We evaluate ChiMed-GPT on information extraction, question answering (QA), and multi-turn dialogue.
### Information Extraction
The results on CCKS2019 and [ChiMST](https://github.com/synlp/ChiMST) are
| Models | CCKS-2019 | ChiMST |
|-----------------|-----------|--------|
| GPT-3.5-Turbo | 31.42 | 32.15 |
| GPT-4 | 41.37 | 41.25 |
| Ziya-v1 | 25.31 | 22.26 |
| Ziya-v2 | 27.84 | 25.76 |
| Baichuan | 24.14 | 21.20 |
| Taiyi | 30.90 | 30.55 |
| MedicalGPT (Z) | 29.59 | 28.12 |
| MedicalGPT (B) | 23.80 | 26.16 |
| CHiMed-GPT | **40.82** | **41.04** |### QA
The results on [C-Eval](https://cevalbenchmark.com/), CMMLU, and MedQA are
| Models | C-Eval | CMMLU | MedQA |
|----------------|-------------|------------|------------|
| GPT-3.5-Turbo | 56.58 | 49.91 | 44.50 |
| GPT-4 | 71.29 | 69.55 | 67.99 |
| Ziya-v1 | 36.59 | 29.07 | 12.50 |
| Ziya-v2 | 39.02 | 49.06 | 13.00 |
| Baichuan | 41.46 | 45.28 | 13.00 |
| Taiyi | 48.78 | 45.20 | 39.20 |
| MedicalGPT (Z) | 48.78 | 34.56 | 25.99 |
| MedicalGPT (B) | 39.02 | 43.82 | 18.50 |
| CHiMed-GPT | **68.29** | **52.92** | **44.50** |And the results on [ChiMed](https://github.com/synlp/ChiMST) is
| Models | BLEU-1 | BLEU-2 | ROUGE-1 | ROUGE-2 | ROUGE-L |
|----------------|------|------|------|------|------|
| GPT-3.5-Turbo | 39.15| 32.85| 26.61| 7.31 | 16.84|
| GPT-4 | 33.61| 28.27| 26.51| 7.13 | 16.63|
| Ziya-v1 | 6.18 | 5.77 | 18.59| 3.94 | 12.66|
| Ziya-v2 | 38.41| 31.90| 26.91| 7.90 | 18.67|
| Baichuan | 5.81 | 5.25 | 16.91| 3.01 | 11.30|
| Taiyi | 11.73| 9.96 | 21.76| 5.26 | 15.46|
| MedicalGPT (Z) | 39.02| 32.35| 26.76| 8.10 | 18.16|
| MedicalGPT (B) | 5.82 | 5.26 | 16.61| 2.94 | 11.11|
| CHiMed-GPT | **44.58**| **37.22**| **27.11**| **8.89** | **19.86**|### Multi-turn Dialog
The results on [MC](https://aclanthology.org/2020.coling-main.63/)
| Models | B-1 | B-2 | R-1 | R-2 | R-L |
|-----------------|-------|-------|-------|------|------|
| GPT-3.5-Turbo | 24.29 | 20.17 | 20.64 | 8.39 | 17.14|
| GPT-4 | 18.58 | 15.76 | 18.92 | 6.62 | 14.55|
| Ziya-v1 | 15.85 | 11.75 | 9.92 | 3.04 | 9.02 |
| Ziya-v2 | 14.21 | 10.99 | 12.20 | 4.45 | 10.61|
| Baichuan | 3.44 | 1.61 | 3.87 | 0.34 | 3.49 |
| Taiyi | 5.81 | 4.67 | 14.23 | 4.55 | 11.99|
| MedicalGPT (Z) | 20.26 | 16.42 | 17.51 | 5.42 | 14.21|
| MedicalGPT (B) | 3.94 | 2.19 | 4.34 | 0.13 | 3.50 |
| CHiMed-GPT | **33.14** | **30.86** | **43.43** | **34.91**| **42.16**|## Download
The version 1.0 is released at [Hugging Face](https://huggingface.co/SYNLP/ChiMed-GPT-1.0).
## Usage
Install [PyTorch](https://pytorch.org/get-started/locally/) and [Transformers](https://huggingface.co/docs/transformers/installation) and use the model with the following code.
```python
from transformers import AutoTokenizer
from transformers import LlamaForCausalLM
import torchquery="[human]:感冒怎么处理?\n[bot]:"
model = LlamaForCausalLM.from_pretrained('SYNLP/ChiMed-GPT-1.0', torch_dtype=torch.float16, device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained(ckpt)
input_ids = tokenizer(query, return_tensors="pt").input_ids.to('cuda:0')
generate_ids = model.generate(
input_ids,
max_new_tokens=512,
do_sample = True,
top_p = 0.9)
output = tokenizer.batch_decode(generate_ids)[0]
print(output)
```Please use the latest version of `transformers` (we use the version 4.35.2).
## Disclaimer
Please note that the content generated by ChiMed-GPT, including any advice, suggestions, information, or recommendations, does not reflect our views or beliefs. The responses provided by the large language model should not be considered as endorsements, opinions, or advice from us. We do not take responsibility for the accuracy, reliability, or appropriateness of the information provided. Users should exercise their own judgment and discretion when interpreting and using the information generated by the large language model.