Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/szymciem8/analysis-of-thyroid-us-images-with-ml
https://github.com/szymciem8/analysis-of-thyroid-us-images-with-ml
computer-vision machine-learning master-thesis neural-network segmentation u-net
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/szymciem8/analysis-of-thyroid-us-images-with-ml
- Owner: szymciem8
- License: mit
- Created: 2022-12-02T11:18:59.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-11-02T16:41:25.000Z (about 1 year ago)
- Last Synced: 2023-11-02T22:34:14.748Z (about 1 year ago)
- Topics: computer-vision, machine-learning, master-thesis, neural-network, segmentation, u-net
- Language: Jupyter Notebook
- Homepage:
- Size: 138 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Anlysis of thyroid US images with ML
Deep learning machine models are employed for the segmentation of tumors and pathological changes in medical images. This paper presents the results of an analysis, based on selected metrics, regarding the U-Net, U2-Net, U-Net 3+, and TransUnet models. Furthermore, it discusses how the selected models address the issue of data heterogeneity.
Trained models can be downloaded from [OneDrive](https://polslpl-my.sharepoint.com/:f:/g/personal/szymcie806_student_polsl_pl/EqeQThhS8S5LotZipdUZqagBcxockNVqYzDHuLMjRVLPXw?e=LPiMM2). You have to be member of the Silesian University of Science organization in order to access those models.
# Comparison
## Samsung on Samsung
### Metrics
| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.278 +- 2.03e-02 | 0.266 +- 7.24e-03 | 0.305 +- 6.75e-03 | 0.316 +- 2.39e-02 |
| Dokładność | 0.972 +- 3.73e-03 | 0.973 +- 1.90e-03 | 0.969 +- 1.94e-03 | 0.965 +- 3.73e-03 |
| Średnia dokładność | 0.86 +- 1.64e-02 | 0.864 +- 1.10e-02 | 0.852 +- 1.20e-02 | 0.833 +- 1.75e-02 |
| Precyzja | 0.729 +- 3.22e-02 | 0.736 +- 2.22e-02 | 0.715 +- 2.54e-02 | 0.677 +- 3.47e-02 |
| Czułość | 0.864 +- 1.03e-02 | 0.881 +- 5.84e-03 | 0.839 +- 2.32e-02 | 0.843 +- 2.53e-02 |
| F1/Dice | 0.79 +- 2.29e-02 | 0.801 +- 1.12e-02 | 0.769 +- 6.76e-03 | 0.749 +- 2.43e-02 |
| IoU | 0.655 +- 3.01e-02 | 0.669 +- 1.58e-02 | 0.625 +- 8.81e-03 | 0.601 +- 3.21e-02 |
| ROC AUC | 0.946 +- 6.29e-03 | 0.988 +- 6.18e-04 | 0.932 +- 6.76e-03 | 0.96 +- 5.72e-03 |
![png](report_images/output_74_0.png)### ROC curves
![png](report_images/output_75_0.png)### Predictions examples
![png](report_images/output_76_0.png)
## GE on GE
### Metrics
| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.366 +- 1.40e-02 | 0.38 +- 7.26e-03 | 0.359 +- 3.30e-03 | 0.344 +- 1.22e-02 |
| Dokładność | 0.945 +- 3.13e-03 | 0.947 +- 4.21e-03 | 0.947 +- 2.08e-03 | 0.945 +- 6.15e-03 |
| Średnia dokładność | 0.8 +- 9.00e-03 | 0.812 +- 1.43e-02 | 0.809 +- 8.16e-03 | 0.805 +- 1.80e-02 |
| Precyzja | 0.616 +- 1.74e-02 | 0.644 +- 2.93e-02 | 0.634 +- 1.76e-02 | 0.625 +- 3.75e-02 |
| Czułość | 0.807 +- 1.42e-02 | 0.774 +- 1.09e-02 | 0.809 +- 1.56e-02 | 0.845 +- 2.48e-02 |
| F1/Dice | 0.699 +- 1.43e-02 | 0.7 +- 1.37e-02 | 0.709 +- 4.71e-03 | 0.713 +- 1.86e-02 |
| IoU | 0.538 +- 1.68e-02 | 0.54 +- 1.62e-02 | 0.55 +- 5.69e-03 | 0.555 +- 2.20e-02 |
| ROC AUC | 0.895 +- 8.19e-03 | 0.961 +- 1.60e-03 | 0.907 +- 5.08e-03 | 0.938 +- 3.22e-03 |![png](report_images/output_82_0.png)
### ROC curves
![png](report_images/output_83_0.png)### Predictions examples
![png](report_images/output_84_0.png)
## Samsung on GE
### Metrics
| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.572 +- 3.35e-02 | 0.67 +- 1.99e-02 | 0.641 +- 6.64e-02 | 0.615 +- 2.55e-02 |
| Dokładność | 0.802 +- 3.52e-02 | 0.646 +- 3.93e-02 | 0.663 +- 7.46e-02 | 0.734 +- 3.98e-02 |
| Średnia dokładność | 0.638 +- 2.12e-02 | 0.587 +- 7.22e-03 | 0.61 +- 3.72e-02 | 0.609 +- 1.09e-02 |
| Precyzja | 0.291 +- 4.34e-02 | 0.181 +- 1.49e-02 | 0.234 +- 7.45e-02 | 0.229 +- 2.26e-02 |
| Czułość | 0.847 +- 2.27e-02 | 0.94 +- 8.59e-03 | 0.894 +- 2.72e-02 | 0.912 +- 1.28e-02 |
| F1/Dice | 0.424 +- 4.34e-02 | 0.303 +- 2.07e-02 | 0.346 +- 7.94e-02 | 0.363 +- 2.86e-02 |
| IoU | 0.273 +- 3.57e-02 | 0.179 +- 1.43e-02 | 0.222 +- 6.59e-02 | 0.223 +- 2.10e-02 |
| ROC AUC | 0.835 +- 1.56e-02 | 0.908 +- 4.07e-03 | 0.839 +- 2.54e-02 | 0.825 +- 1.57e-02 |
![png](report_images/output_89_0.png)### ROC curves
![png](report_images/output_90_0.png)### Predictions examples
![png](report_images/output_91_0.png)
## GE on Samsung
### Metrics
| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.391 +- 2.27e-02 | 0.434 +- 1.91e-02 | 0.398 +- 2.74e-02 | 0.381 +- 1.48e-02 |
| Dokładność | 0.965 +- 3.02e-03 | 0.96 +- 3.40e-03 | 0.967 +- 1.26e-03 | 0.962 +- 3.99e-03 |
| Średnia dokładność | 0.848 +- 1.47e-02 | 0.827 +- 1.81e-02 | 0.867 +- 1.28e-02 | 0.832 +- 2.12e-02 |
| Precyzja | 0.715 +- 2.89e-02 | 0.675 +- 3.58e-02 | 0.754 +- 2.75e-02 | 0.679 +- 4.39e-02 |
| Czułość | 0.715 +- 2.41e-02 | 0.677 +- 2.02e-02 | 0.694 +- 4.43e-02 | 0.754 +- 2.96e-02 |
| F1/Dice | 0.713 +- 2.22e-02 | 0.674 +- 2.22e-02 | 0.717 +- 1.49e-02 | 0.708 +- 1.72e-02 |
| IoU | 0.556 +- 2.72e-02 | 0.51 +- 2.62e-02 | 0.559 +- 1.85e-02 | 0.548 +- 2.03e-02 |
| ROC AUC | 0.899 +- 1.81e-02 | 0.959 +- 7.84e-03 | 0.866 +- 2.16e-02 | 0.945 +- 4.32e-03 |![png](report_images/output_96_0.png)
### ROC curves
![png](report_images/output_97_0.png)### Predictions examples
![png](report_images/output_98_0.png)
## Mix on Samsung
### Metrics
| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.316 +- 2.75e-02 | 0.256 +- 1.41e-02 | 0.278 +- 6.06e-03 | 0.254 +- 8.75e-03 |
| Dokładność | 0.959 +- 7.47e-03 | 0.976 +- 1.10e-03 | 0.97 +- 1.27e-03 | 0.975 +- 1.43e-03 |
| Średnia dokładność | 0.812 +- 2.71e-02 | 0.879 +- 5.15e-03 | 0.849 +- 7.37e-03 | 0.868 +- 7.17e-03 |
| Precyzja | 0.633 +- 5.42e-02 | 0.767 +- 1.05e-02 | 0.707 +- 1.54e-02 | 0.744 +- 1.43e-02 |
| Czułość | 0.882 +- 1.01e-02 | 0.875 +- 1.83e-02 | 0.88 +- 1.38e-02 | 0.888 +- 7.89e-03 |
| F1/Dice | 0.731 +- 3.63e-02 | 0.817 +- 9.07e-03 | 0.783 +- 5.91e-03 | 0.809 +- 9.08e-03 |
| IoU | 0.581 +- 4.47e-02 | 0.691 +- 1.31e-02 | 0.644 +- 7.90e-03 | 0.68 +- 1.30e-02 |
| ROC AUC | 0.932 +- 4.91e-03 | 0.989 +- 1.19e-03 | 0.942 +- 1.24e-02 | 0.97 +- 2.75e-03 |![png](report_images/output_104_0.png)
### ROC curves
![png](report_images/output_105_0.png)
## Mix on GE
### Metrics| Metryki | U-Net | U$^2$-Net | U-Net 3+ | TransUnet |
|--------------------|-------------------|-------------------|-------------------|-------------------|
| Focal Tversky | 0.386 +- 3.43e-02 | 0.333 +- 7.39e-03 | 0.364 +- 9.64e-03 | 0.322 +- 4.21e-03 |
| Dokładność | 0.934 +- 9.97e-03 | 0.956 +- 2.28e-03 | 0.947 +- 2.25e-03 | 0.956 +- 1.94e-03 |
| Średnia dokładność | 0.776 +- 2.42e-02 | 0.837 +- 8.81e-03 | 0.807 +- 9.20e-03 | 0.833 +- 7.65e-03 |
| Precyzja | 0.568 +- 4.68e-02 | 0.691 +- 1.84e-02 | 0.631 +- 1.99e-02 | 0.681 +- 1.60e-02 |
| Czułość | 0.814 +- 3.28e-02 | 0.812 +- 1.48e-02 | 0.803 +- 2.36e-02 | 0.831 +- 1.04e-02 |
| F1/Dice | 0.666 +- 3.85e-02 | 0.745 +- 8.41e-03 | 0.705 +- 6.68e-03 | 0.748 +- 6.65e-03 |
| IoU | 0.504 +- 4.15e-02 | 0.594 +- 1.07e-02 | 0.544 +- 7.92e-03 | 0.598 +- 8.43e-03 |
| ROC AUC | 0.895 +- 1.35e-02 | 0.969 +- 1.61e-03 | 0.897 +- 1.90e-02 | 0.933 +- 6.79e-03 |![png](report_images/output_109_0.png)
### ROC curves
![png](report_images/output_110_0.png)