Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/t04glovern/stylegan-pokemon
Generating Pokemon cards using a mixture of StyleGAN and RNN to create beautiful & vibrant cards ready for battle!
https://github.com/t04glovern/stylegan-pokemon
pokemon rnn rnn-tensorflow stylegan stylegan-model tensorflow
Last synced: about 1 month ago
JSON representation
Generating Pokemon cards using a mixture of StyleGAN and RNN to create beautiful & vibrant cards ready for battle!
- Host: GitHub
- URL: https://github.com/t04glovern/stylegan-pokemon
- Owner: t04glovern
- Created: 2019-05-11T15:24:59.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-01-29T14:42:52.000Z (almost 5 years ago)
- Last Synced: 2024-04-21T17:16:34.856Z (9 months ago)
- Topics: pokemon, rnn, rnn-tensorflow, stylegan, stylegan-model, tensorflow
- Language: Python
- Homepage: https://devopstar.com/2019/05/21/stylegan-pokemon-card-generator/
- Size: 6.91 MB
- Stars: 50
- Watchers: 2
- Forks: 10
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Pokemon Card Generator
Generating Pokemon cards using a mixture of StyleGAN and RNN to create beautiful & vibrant cards ready for battle!
![Example](samples/pokemon.png)
Demo: [https://thesepokemondonotexist.com](https://thesepokemondonotexist.com)
## Run StyleGAN
### StyleGAN Environment
```bash
conda env create -f environment.yml
conda activate stylegan-pokemon
cd stylegan
```#### StyleGAN Dataset
```bash
aws s3 cp s3://devopstar/resources/stylegan-pokemon/network-snapshot-007961.pkl network-snapshot-007961.pkl
aws s3 sync s3://devopstar/resources/stylegan-pokemon/kaggle-one-shot-pokemon kaggle-one-shot-pokemon
mkdir pokemon
```#### Prepare Images
```bash
python prepare.py
python dataset_tool.py create_from_images datasets/smalls/ ./pokemon/
```#### StyleGAN Training
```bash
python train.py
```#### StyleGAN Invoke [Self-trained]
Using the `network-final.pkl` under the most recent entry in the [stylegan/results](stylegan/results) path
```bash
python invoke.py \
--model_file './results/00000-sgan-custom-1gpu/network-final.pkl' \
--output_file '../img/pokemon1.png'
```#### StyleGAN Invoke [Pre-trained]
```bash
python invoke.py \
--model_file './network-snapshot-007961.pkl' \
--output_file '../img/pokemon2.png'
```#### StyleGAN Invoke [MichaelFriese10](https://twitter.com/MichaelFriese10/status/1127614400750346240)
```bash
aws s3 cp s3://devopstar/resources/stylegan-pokemon/MichaelFriese10_pokemon.pkl MichaelFriese10_pokemon.pkl
python invoke.py \
--model_file './MichaelFriese10_pokemon.pkl' \
--output_file '../img/pokemon3.png'
```## Run RNN
### RNN Environment
```bash
conda activate stylegan-pokemon
cd rnn
```#### RNN Dataset
Dataset is from [armgilles/pokemon.csv](https://gist.github.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6)
```bash
ls -al data/pokemon/input.txt
```Moves and Descriptions come from [https://pokemondb.net/move/all](https://pokemondb.net/move/all)
```bash
ls -al data/moves/input.txt
ls -al data/desc/input.txt
```#### RNN Training
```bash
# Pokemon
python train.py \
--data_dir=./data/pokemon \
--save_dir=./save/pokemon \
--seq_length=12# Moves
python train.py \
--data_dir=./data/moves \
--save_dir=./save/moves \
--rnn_size=300 \
--seq_length=12# Description
python train.py \
--data_dir=./data/desc \
--save_dir=./save/desc \
--seq_length=25
```#### RNN Invoke
```bash
# Pokemon
python sample.py \
--save_dir=./save/pokemon \
--output_dir=../samples/pokemon.txt# Moves
python sample.py \
--save_dir=./save/moves \
--output_dir=../samples/moves.txt# Description
python sample.py \
--save_dir=./save/desc \
--output_dir=../samples/desc.txt \
-n=1500
```### Cropping
```bash
# Define all fields adhoc
./cropper.sh \
"Pokemon Name" \
"Pokemon Attack 1" \
"Pokemon Attack Description 1" \
"Pokemon Attack 2" \
"Pokemon Attack Description 2" \
"img/pokemon1.png"# Random
./cropper-shuffle.sh \
"samples/pokemon.txt" \
"samples/moves.txt" \
"samples/desc.txt" \
"img/pokemon3.png"
```### Web Hosting
```bash
aws s3 mb s3://thesepokemondonotexist.com
aws s3 cp index.html s3://thesepokemondonotexist.com/index.html
```## Attribution
* [One-Shot-Pokemon Images](https://www.kaggle.com/aaronyin/oneshotpokemon)
* [Inspired from Andrej Karpathy's char-rnn](https://github.com/karpathy/char-rnn)
* [Pokemon generated by neural network](https://aiweirdness.com/post/147834883707/pokemon-generated-by-neural-network)
* [MichaelFriese10 Pixel art model](https://twitter.com/MichaelFriese10/status/1127614400750346240)
* [Pokemon Blank Card Templates](https://www.deviantart.com/levelinfinitum/art/Pokemon-Blank-Card-Templates-Basic-474601445)