Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tadayosi/torchserve-client-java


https://github.com/tadayosi/torchserve-client-java

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

        

# TorchServe Client for Java

[![Release](https://jitpack.io/v/tadayosi/torchserve-client-java.svg)]()
[![Test](https://github.com/tadayosi/torchserve-client-java/actions/workflows/test.yml/badge.svg)](https://github.com/tadayosi/torchserve-client-java/actions/workflows/test.yml)

TorchServe Client for Java (TSC4J) is a Java client library for [TorchServe](https://pytorch.org/serve/index.html). It supports the following [TorchServe REST API](https://pytorch.org/serve/rest_api.html):

- [Inference API](https://pytorch.org/serve/inference_api.html)
- [Management API](https://pytorch.org/serve/management_api.html)
- [Metrics API](https://pytorch.org/serve/metrics_api.html)

## Requirements

- Java 17+

## Install

1. Add the [JitPack](https://jitpack.io) repository to your `pom.xml`:

```xml


jitpack.io
https://jitpack.io


```

2. Add the dependency:

```xml

com.github.tadayosi
torchserve-client-java
v0.3

```

## Usage

### Inference

- Prediction:

```java
TorchServeClient client = TorchServeClient.newInstance();

byte[] image = Files.readAllBytes(Path.of("0.png"));
Object result = client.inference().predictions("mnist_v2", image);
System.out.println(result);
// => 0
```

- With the inference API endpoint other than :

```java
TorchServeClient client = TorchServeClient.builder()
.inferenceAddress("http://localhost:12345")
.build();
```

- With token authorization:

```java
TorchServeClient client = TorchServeClient.builder()
.inferenceKey("")
.build();
```

### Management

- Register a model:

```java
TorchServeClient client = TorchServeClient.newInstance();

Response response = client.management().registerModel(
"https://torchserve.pytorch.org/mar_files/mnist_v2.mar",
RegisterModelOptions.empty());
System.out.println(response.getStatus());
// => "Model "mnist_v2" Version: 2.0 registered with 0 initial workers. Use scale workers API to add workers for the model."
```

- Scale workers for a model:

```java
TorchServeClient client = TorchServeClient.newInstance();

Response response = client.management().setAutoScale(
"mnist_v2",
SetAutoScaleOptions.builder()
.minWorker(1)
.maxWorker(2)
.build());
System.out.println(response.getStatus());
// => "Processing worker updates..."
```

- Describe a model:

```java
TorchServeClient client = TorchServeClient.newInstance();

List model = client.management().describeModel("mnist_v2");
System.out.println(model.get(0));
// =>
// ModelDetail {
// modelName: mnist_v2
// modelVersion: 2.0
// ...
```

- Unregister a model:

```java
TorchServeClient client = TorchServeClient.newInstance();

Response response = client.management().unregisterModel(
"mnist_v2",
UnregisterModelOptions.empty());
System.out.println(response.getStatus());
// => "Model "mnist_v2" unregistered"
```

- List models:

```java
TorchServeClient client = TorchServeClient.newInstance();

ModelList models = client.management().listModels(10, null);
System.out.println(models);
// =>
// ModelList {
// nextPageToken: null
// models: [Model {
// modelName: mnist_v2
// modelUrl: https://torchserve.pytorch.org/mar_files/mnist_v2.mar
// },
// ...
```

- Set default version for a model:

```java
TorchServeClient client = TorchServeClient.newInstance();

Response response = client.management().setDefault("mnist_v2", "2.0");
System.out.println(response.getStatus());
// => "Default version successfully updated for model "mnist_v2" to "2.0""
```

- With the management API endpoint other than :

```java
TorchServeClient client = TorchServeClient.builder()
.managementAddress("http://localhost:12345")
.build();
```

- With token authorization:

```java
TorchServeClient client = TorchServeClient.builder()
.managementKey("")
.build();
```

### Metrics

- Get metrics in Prometheus format:

```java
TorchServeClient client = TorchServeClient.newInstance();

String metrics = client.metrics().metrics();
System.out.println(metrics);
// =>
// # HELP MemoryUsed Torchserve prometheus gauge metric with unit: Megabytes
// # TYPE MemoryUsed gauge
// MemoryUsed{Level="Host",Hostname="3a9b51d41fbf",} 2075.09765625
// ...
```

- With the metrics API endpoint other than :

```java
TorchServeClient client = TorchServeClient.builder()
.metricsAddress("http://localhost:12345")
.build();
```

## Configuration

### tsc4j.properties

```properties
inference.key =
inference.address = http://localhost:8080
# inference.address takes precedence over inference.port if it's defined
inference.port = 8080

management.key =
management.address = http://localhost:8081
# management.address takes precedence over management.port if it's defined
management.port = 8081

metrics.address = http://localhost:8082
# metrics.address takes precedence over metrics.port if it's defined
metrics.port = 8082
```

### System properties

You can configure the TSC4J properties via system properties with prefix `tsc4j.`.

For instance, you can configure `inference.address` with the `tsc4j.inference.address` system property.

### Environment variables

You can also configure the TSC4J properties via environment variables with prefix `TSC4J_`.

For instance, you can configure `inference.address` with the `TSC4J_INFERENCE_ADDRESS` environment variable.

## Examples

See [examples](./examples/).

## Build

```console
mvn clean install
```