Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tadpole/DRNE
The Implementation of "Deep Recursive Network Embedding with Regular Equivalence"(KDD 2018)
https://github.com/tadpole/DRNE
centrality deep-neural-networks network-embedding network-representation-learning
Last synced: 2 months ago
JSON representation
The Implementation of "Deep Recursive Network Embedding with Regular Equivalence"(KDD 2018)
- Host: GitHub
- URL: https://github.com/tadpole/DRNE
- Owner: tadpole
- Created: 2018-10-31T11:05:37.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-05-21T14:53:18.000Z (over 5 years ago)
- Last Synced: 2024-08-02T13:21:51.570Z (5 months ago)
- Topics: centrality, deep-neural-networks, network-embedding, network-representation-learning
- Language: Python
- Homepage: http://thumedialab.com/Deep-Recursive-Network-Embedding-with-Regular-Equivalence
- Size: 968 KB
- Stars: 26
- Watchers: 4
- Forks: 15
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-graph-based-semi-supervised-learning - code
- graph-networks - Deep Recursive Network Embedding with Regular Equivalence
README
# DRNE
The Implementation of "[Deep Recursive Network Embedding with Regular Equivalence](https://dl.acm.org/citation.cfm?doid=3219819.3220068)"(KDD 2018).### Requirements
```
Python >= 3.5.2
scipy >= 0.19.1
numpy >= 1.13.1
tensorflow == 1.2.0
networkx >= 1.11
```### Usage
##### Example Usage
```
python src/main.py --data_path dataset/barbell.edgelist --save_path result/barbell --save_suffix test \
-s 16 -b 256 -lr 0.0025 --index_from_0 True
```
##### Full Command List
```
usage: Deep Recursive Network Embedding with Regular Equivalence
[-h] [--data_path DATA_PATH] [--save_path SAVE_PATH]
[--save_suffix SAVE_SUFFIX] [-s EMBEDDING_SIZE] [-e EPOCHS_TO_TRAIN]
[-b BATCH_SIZE] [-lr LEARNING_RATE] [--undirected UNDIRECTED]
[-a ALPHA] [-l LAMB] [-g GRAD_CLIP] [-K K]
[--sampling_size SAMPLING_SIZE] [--seed SEED]
[--index_from_0 INDEX_FROM_0]optional arguments:
-h, --help show this help message and exit
--data_path DATA_PATH
Directory to load data.
--save_path SAVE_PATH
Directory to save data.
--save_suffix SAVE_SUFFIX
Directory to save data.
-s EMBEDDING_SIZE, --embedding_size EMBEDDING_SIZE
the embedding dimension size
-e EPOCHS_TO_TRAIN, --epochs_to_train EPOCHS_TO_TRAIN
Number of epoch to train. Each epoch processes the
training data once completely
-b BATCH_SIZE, --batch_size BATCH_SIZE
Number of training examples processed per step
-lr LEARNING_RATE, --learning_rate LEARNING_RATE
initial learning rate
--undirected UNDIRECTED
whether it is an undirected graph
-a ALPHA, --alpha ALPHA
the rate of structure loss and orth loss
-l LAMB, --lamb LAMB the rate of structure loss and guilded loss
-g GRAD_CLIP, --grad_clip GRAD_CLIP
clip gradients
-K K K-neighborhood
--sampling_size SAMPLING_SIZE
sample number
--seed SEED random seed
--index_from_0 INDEX_FROM_0
whether the node index is from zero
```
### Cite
If you find this code useful, please cite our paper:
```
@inproceedings{tu2018deep,
title={Deep recursive network embedding with regular equivalence},
author={Tu, Ke and Cui, Peng and Wang, Xiao and Yu, Philip S and Zhu, Wenwu},
booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={2357--2366},
year={2018},
organization={ACM}
}
```