Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/taipingeric/yolo-v4-tf.keras

A simple tf.keras implementation of YOLO v4
https://github.com/taipingeric/yolo-v4-tf.keras

computer-vision keras keras-model object-detection python tensorflow tensorflow2 yolo yolov4

Last synced: 10 days ago
JSON representation

A simple tf.keras implementation of YOLO v4

Awesome Lists containing this project

README

        

# yolo-v4-tf.keras
A simple tf.keras implementation of YOLO v4

![asset/pred.png](asset/pred.png)

## TODO

- [X] Cosine annealing scheduler
- [X] mAP
- [ ] Mosaic augmentation
- [ ] DropBlock
- [ ] Self-adversarial training (SAT)
- [ ] Label smoothing
- [X] Mish
- [X] IoU, GIoU, CIoU loss
- [X] multi-GPU training

## Quick Start

1. Download official YOLO v4 pre-trained weights from [github/AlexeyAB/darknet](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT)
2. Initialize YOLO model and load weights
3. Run prediction

Example: [Inference.ipynb](notebook/Inference.ipynb):
```python
from models import Yolov4
model = Yolov4(weight_path='yolov4.weights',
class_name_path='class_names/coco_classes.txt')
model.predict('input.jpg')
```

## Training

1. Generate your annotation files (.XML) in VOC format for each images

*HINT:* An easily used annotation tool: [labelImg](https://github.com/tzutalin/labelImg)

Example: A 2 object xml file
```xml

train_img2
yui.jpg
/Users/taipingeric/dataset/train_img2/yui.jpg

Unknown


465
597
3

0

person
Unspecified
1
0

43
41
430
597



person
Unspecified
1
0

60
70
20
207




```

2. Convert all XML files to a single .txt file:

Row format: `img_path BOX0 BOX1 BOX2 ...`

BOX format: `xmin,ymin,xmax,ymax,class_id`

Example: [xml_to_txt.py](xml_to_txt.py)
```
img1.jpg 50,60,70,80,0 70,90,100,180,2
img2.jpg 10,60,70,80,0
...
```

3. Generate class name file, # of lines == # of classes

Example: [coco_classes.txt](class_names/coco_classes.txt)
```
person
bicycle
car
motorbike
aeroplane
bus
...
```
4. Train with the code below

Example: [train.ipynb](notebook/train.ipynb)
```python

from utils import DataGenerator, read_annotation_lines
from models import Yolov4

train_lines, val_lines = read_annotation_lines('../dataset/txt/anno-test.txt',
test_size=0.1)
FOLDER_PATH = '../dataset/img'
class_name_path = '../class_names/bccd_classes.txt'
data_gen_train = DataGenerator(train_lines,
class_name_path,
FOLDER_PATH)
data_gen_val = DataGenerator(val_lines,
class_name_path,
FOLDER_PATH)

model = Yolov4(weight_path=None,
class_name_path=class_name_path)

model.fit(data_gen_train,
initial_epoch=0,
epochs=10000,
val_data_gen=data_gen_val,
callbacks=[])

```

## Acknowledgements

* [qqwweee/keras-yolo3](https://github.com/qqwweee/keras-yolo3)
* [AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
* [hunglc007/tensorflow-yolov4-tflite](https://github.com/hunglc007/tensorflow-yolov4-tflite)
* [Cartucho/mAP](https://github.com/Cartucho/mAP)
* [miemie2013/Keras-YOLOv4](https://github.com/miemie2013/Keras-YOLOv4)
* [david8862/keras-YOLOv3-model-set](https://github.com/david8862/keras-YOLOv3-model-set)
* [Ma-Dan/keras-yolo4](https://github.com/Ma-Dan/keras-yolo4)