Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/takana671/noisetexture

Generating noise texture images.
https://github.com/takana671/noisetexture

cellular-noise cython fbm noise-textures numpy periodic-noise perlin-noise python3 voronoi

Last synced: 5 days ago
JSON representation

Generating noise texture images.

Awesome Lists containing this project

README

        

# NoiseTexture

This repository contains python and cython codes that can generate noise images, which can be used for texture and heightmap to visualize the terrain in 3D.
In the python modules, numpy, and in the Cython modules, C array is mainly used. Those modules have the same functions, which return the array to be converted to an image.
Their difference is speed. See [speed comparison](#speed-comparison) result below.

# Requirements

* Cython 3.0.11
* numpy 2.1.2
* opencv-contrib-python 4.10.0.84
* opencv-python 4.10.0.84

# Environment

* Python 3.11
* Windows11

# Building Cython code

```
python setup.py build_ext --inplace
```

# Example

```
from cynoise.perlin import Perlin
# from pynoise.perlin import Perlin
from create_image import create_image_8bit, create_image_16bit

maker = Perlin()
arr = maker.pnoise3()
create_image_8bit(arr)
create_image_16bit(arr)

# change the number of lattices and the image size. The grid default is 4, size default is 256.
maker = Perlin(grid=8, size=257)

```

A noise image will be output as png file.
For more details of methods and parameters, please see source codes.

![sample](https://github.com/user-attachments/assets/d8c7a581-de6b-4af6-90ad-a4d095d6a854)

# Speed ​​comparison

The execution time of each methods were measured like this.

```
maker = Voroni()
reslt = %timeit -o maker.noise2()
print(reslt.best, reslt.loops, reslt.repeat)
```



python
cython


method
best(s)
loops
repeat
best(s)
loops
repeat


Perlin.noise2
1.210008
1
7
0.017233
100
7


Perlin.noise3
2.081957
1
7
0.023179
10
7


Perlin.wrap
4.889988
1
7
0.043762
10
7


FBM.noise2
3.849672
1
7
0.041291
10
7


FBM.wrap
15.43603
1
7
0.139114
10
7


Cellular.noise2
1.420607
1
7
0.036839
10
7


Cellular.noise3
3.434327
1
7
0.090029
10
7


Cellular.noise24
4.833801
1
7
0.099891
10
7


Cellular.cnoise2
4.860955
1
7
0.153122
10
7


Cellular.cnoise3
13.82344
1
7
0.332647
1
7


Periodic.noise2
1.494618
1
7
0.021754
10
7


Periodic.noise3
2.582619
1
7
0.031351
10
7


Voronoi.noise2
1.464140
1
7
0.097766
10
7


Voronoi.noise3
3.533389
1
7
0.158923
10
7