Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/taki0112/Tensorflow2-Cookbook
Simple Tensorflow 2.x Cookbook for easy-to-use
https://github.com/taki0112/Tensorflow2-Cookbook
Last synced: 3 months ago
JSON representation
Simple Tensorflow 2.x Cookbook for easy-to-use
- Host: GitHub
- URL: https://github.com/taki0112/Tensorflow2-Cookbook
- Owner: taki0112
- License: mit
- Created: 2020-01-28T10:48:25.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-19T08:48:54.000Z (over 4 years ago)
- Last Synced: 2024-05-08T00:37:32.615Z (6 months ago)
- Language: Python
- Size: 2.73 MB
- Stars: 265
- Watchers: 22
- Forks: 53
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-list - Tensorflow2 Cookbook - Simple Tensorflow 2.x Cookbook for easy-to-use (Machine Learning Tutorials / Data Management)
README
# [Tensorflow1 Cookbook](https://github.com/taki0112/Tensorflow-Cookbook)
## Contributions
In now, this repo provides **`general architectures`** and **`functions`** that are useful for the GAN and classification.I will continue to add useful things to other areas.
Also, your pull requests and issues are always welcome.
And tell me what you want to implement on the issue. I'll implement it.
## Functional vs Sequential
## Functional API [[Template code]](./template/functional)
### Pros
* More **fast** than Sequential
* More **easy** to create a flexible model architecture
* Easy to use some layer operaions like `concatenate`, `add` , ...### Cons
* **Define** `tf.keras.layers.Input`
* You have to know the `shape of input tensor`
* **Define** `tf.keras.Model`
* You have to create the `Model` constructor at the end## Sequential API [[Template code]](./template/sequential)
### Pros
* **Simple** to use
* Similar to Pytorch style### Cons
* **Hard** to create a flexible model architecture## Example code
* [CycleGAN](./example_cyclegan)---
## How to use
## 1. Import
### Funtional API
* `ops_functional.py`
* Functional API operations
* from ops_functional import *### Sequential API
* `ops_sequential.py`
* Sequential API operations
* from ops_sequential import *### Common
* `utils.py`
* image processing + something useful functions (e.g. automatic_gpu_usage)
* `automatic_gpu_usage` : Automatically manage gpu memory
* `multiple_gpu_usage` : You can set gpu memory limit
* from utils import *## 2. Network template
### Functional API
```python
from ops_functional import *
from utils import *automatic_gpu_usage() # for efficient gpu use
input_shape = [img_height, img_width, img_ch]
inputs = tf.keras.layers.Input(input_shape, name='input')# architecture
x = conv(inputs, channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=False, sn=False, name='conv')
x = batch_norm(x, name='batch_norm')
x = relu(x)x = global_avg_pooling(x)
x = fully_connected(x, units=10, sn=False, name='fc')model = tf.keras.Model(inputs, s, name='model')
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
```### Sequential API
```python
from ops_sequential import *
from utils import *automatic_gpu_usage() # for efficient gpu use
model = []
model += [Conv(channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=False, sn=False, name='conv')]
model += [BatchNorm(name)]
model += [Relu()]model += [Global_Avg_Pooling()]
model += [FullyConnected(units=10, sn=False, name='fc')]model = Sequential(model, name='model')
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
```## 3. Data pipeline
```python
img_class = Image_data(img_height, img_width, img_ch, dataset_path, augment_flag)
img_class.preprocess()img_slice = tf.data.Dataset.from_tensor_slices(img_class.dataset)
gpu_device = '/gpu:0'
img_slice = img_slice. \
apply(shuffle_and_repeat(dataset_num)). \
apply(map_and_batch(img_class.image_processing, self.batch_size,
num_parallel_batches=AUTOTUNE,
drop_remainder=True)). \
apply(prefetch_to_device(gpu_device, AUTOTUNE))dataset_iter = iter(img_slice)
```## 4. Restore
```python
ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer)
manager = tf.train.CheckpointManager(ckpt, checkpoint_dir, max_to_keep=2)
start_iteration = 0if manager.latest_checkpoint:
ckpt.restore(manager.latest_checkpoint)
start_iteration = int(manager.latest_checkpoint.split('-')[-1])
print('Latest checkpoint restored!!')
else:
print('Not restoring from saved checkpoint')
```## 5-1. Train
```python
def train_step(img):
with tf.GradientTape() as tape:
logit = model(img)
# calculate loss
"""
if classification
your_loss = cross_entropy_loss(logit, label)
"""
loss = your_loss + regularization_loss(model)
train_variable = model.trainable_variables
gradient = tape.gradient(loss, train_variable)
optimizer.apply_gradients(zip(gradient, train_variable))
return lossdef train():
# setup tensorboard
summary_writer = tf.summary.create_file_writer(log_dir)
for idx in range(start_iteration, total_iteration):
img = next(dataset_iter)
# update network
loss = train_step(img)
# save to tensorboard
with summary_writer.as_default():
tf.summary.scalar('loss', loss, step=idx)
# save ckpt
manager.save(checkpoint_number=idx + 1)
# save model for final step
manager.save(checkpoint_number=total_iteration)
```## 5-2. Multi-GPUs train [[Template code]](./template/sequential_multi_gpu)
```python
strategy = tf.distribute.MirroredStrategy()
NUM_GPUS = strategy.num_replicas_in_synctotal_iteration = iteration // NUM_GPUS
with strategy.scope():
# copy & paste
# 2. Network template
# 3. Data pipeline
# 4. Restoredef train_step(img):
""" SAME """
def distribute_train_step(img):
with strategy.scope():
loss = strategy.experimental_run_v2(train_step, args=(img))
loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, loss, axis=None)
return lossdef train():
# setup tensorboard
summary_writer = tf.summary.create_file_writer(log_dir)
for idx in range(start_iteration, total_iteration):
img = next(dataset_iter)
# update network
loss = distribute_train_step(img)
"""
SAME
"""
```---
## Weight
```python
weight_initializer = tf.initializers.RandomNormal(mean=0.0, stddev=0.02)
weight_regularizer = tf.keras.regularizers.l2(0.0001)
weight_regularizer_fully = tf.keras.regularizers.l2(0.0001)
```### Initialization
* `Xavier` : tf.initializers.GlorotUniform() or tf.initializers.GlorotNormal()
* `He` : tf.initializers.VarianceScaling()
* `Normal` : tf.initializers.RandomNormal(mean=0.0, stddev=0.02)
* `Truncated normal` : tf.initializers.TruncatedNormal(mean=0.0, stddev=0.02)
* `Orthogonal` : tf.initializers.Orthogonal0.02)### Regularization
* `l2_decay` : tf.keras.regularizers.l2(0.0001)
* `orthogonal_regularizer` : orthogonal_regularizer(0.0001) # orthogonal_regularizer_fully(0.0001)---
## Option
* `padding='SAME'`
* pad = ceil[ (kernel - stride) / 2 ]
* `pad_type`
* 'zero' or 'reflect'
* `sn`
* use spectral normalization of not---
## Examples of Functional API
## Recurrent
```python
x = various_rnn(x, n_hidden=128, n_layer=2, dropout_rate=0.5, training=True, bidirectional=True, rnn_type='lstm', name='rnn')
```
### LSTM
### GRU
### Bidirectional
### Deep (n_layer > 1)
## Convolution
### basic conv
```python
x = conv(x, channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=True, sn=True, name='conv')
```
### partial conv (NVIDIA [Partial Convolution](https://github.com/NVIDIA/partialconv))
```python
x = partial_conv(x, channels=64, kernel=3, stride=2, use_bias=True, padding='SAME', sn=True, name='partial_conv')
```![p_conv](https://github.com/taki0112/partial_conv-Tensorflow/raw/master/assets/partial_conv.png)
![p_result](https://github.com/taki0112/partial_conv-Tensorflow/raw/master/assets/classification.png)### dilated conv
```python
x = dilate_conv(x, channels=64, kernel=3, rate=2, use_bias=True, padding='VALID', sn=True, name='dilate_conv')
```
---
## Deconvolution
### basic deconv
```python
x = deconv(x, channels=64, kernel=3, stride=1, padding='SAME', use_bias=True, sn=True, name='deconv')
```
---
## Fully-connected
```python
x = fully_connected(x, units=64, use_bias=True, sn=True, snamecope='fully_connected')
```
---
## Pixel shuffle
```python
x = conv_pixel_shuffle_down(x, scale_factor=2, use_bias=True, sn=True, name='pixel_shuffle_down')
x = conv_pixel_shuffle_up(x, scale_factor=2, use_bias=True, sn=True, name='pixel_shuffle_up')
```
* `down` ===> [height, width] -> [**height // scale_factor, width // scale_factor**]
* `up` ===> [height, width] -> [**height \* scale_factor, width \* scale_factor**]![pixel_shuffle](./assets/pixel_shuffle.png)
---
## Block
### residual block
```python
x = resblock(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block')
x = resblock_down(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block_down')
x = resblock_up(x, channels=64, is_training=is_training, use_bias=True, sn=True, name='residual_block_up')
```
* `down` ===> [height, width] -> [**height // 2, width // 2**]
* `up` ===> [height, width] -> [**height \* 2, width \* 2**]
### dense block
```python
x = denseblock(x, channels=64, n_db=6, is_training=is_training, use_bias=True, sn=True, name='denseblock')
```
* `n_db` ===> The number of dense-block
### residual-dense block
```python
x = res_denseblock(x, channels=64, n_rdb=20, n_rdb_conv=6, is_training=is_training, use_bias=True, sn=True, name='res_denseblock')
```
* `n_rdb` ===> The number of RDB
* `n_rdb_conv` ===> per RDB conv layer
### attention block
```python
x = self_attention(x, use_bias=True, sn=True, name='self_attention')
x = self_attention_with_pooling(x, use_bias=True, sn=True, name='self_attention_version_2')x = squeeze_excitation(x, ratio=16, use_bias=True, sn=True, name='squeeze_excitation')
x = convolution_block_attention(x, ratio=16, use_bias=True, sn=True, name='convolution_block_attention')
x = global_context_block(x, use_bias=True, sn=True, name='gc_block')
x = srm_block(x, use_bias=False, is_training=is_training, name='srm_block')
```
---
---
---
---
---
## Normalization
```python
x = batch_norm(x, training=training, name='batch_norm')
x = layer_norm(x, name='layer_norm')
x = instance_norm(x, name='instance_norm')
x = group_norm(x, groups=32, name='group_norm')x = pixel_norm(x)
x = batch_instance_norm(x, name='batch_instance_norm')
x = layer_instance_norm(x, name='layer_instance_norm')
x = switch_norm(x, scope='switch_norm')x = condition_batch_norm(x, z, training=training, name='condition_batch_norm'):
x = adaptive_instance_norm(x, gamma, beta)
x = adaptive_layer_instance_norm(x, gamma, beta, smoothing=True, name='adaLIN')```
* See [this](https://github.com/taki0112/BigGAN-Tensorflow) for how to use `condition_batch_norm`
* See [this](https://github.com/taki0112/MUNIT-Tensorflow) for how to use `adaptive_instance_norm`
* See [this](https://github.com/taki0112/UGATIT) for how to use `adaptive_layer_instance_norm` & `layer_instance_norm`
---
## Activation
```python
x = relu(x)
x = lrelu(x, alpha=0.2)
x = tanh(x)
x = sigmoid(x)
x = swish(x)
x = elu(x)
```---
## Pooling & Resize
```python
x = nearest_up_sample(x, scale_factor=2)
x = bilinear_up_sample(x, scale_factor=2)
x = nearest_down_sample(x, scale_factor=2)
x = bilinear_down_sample(x, scale_factor=2)x = max_pooling(x, pool_size=2)
x = avg_pooling(x, pool_size=2)x = global_max_pooling(x)
x = global_avg_pooling(x)x = flatten(x)
x = hw_flatten(x)
```---
## Loss
### classification loss
```python
loss, accuracy = classification_loss(logit, label)loss = dice_loss(n_classes=10, logit, label)
```### regularization loss
```python
model_reg_loss = regularization_loss(model)
```
* If you want to use `regularizer`, then you should write it### pixel loss
```python
loss = L1_loss(x, y)
loss = L2_loss(x, y)
loss = huber_loss(x, y)
loss = histogram_loss(x, y)loss = gram_style_loss(x, y)
loss = color_consistency_loss(x, y)
```
* `histogram_loss` means the difference in the color distribution of the image pixel values.
* `gram_style_loss` means the difference between the styles using gram matrix.
* `color_consistency_loss` means the color difference between the generated image and the input image.### gan loss
```python
d_loss = discriminator_loss(Ra=True, gan_type='wgan-gp', real_logit=real_logit, fake_logit=fake_logit)
g_loss = generator_loss(Ra=True, gan_type='wgan-gp', real_logit=real_logit, fake_logit=fake_logit)
```
* `Ra`
* use [relativistic gan](https://arxiv.org/pdf/1807.00734.pdf) or not
* `loss_func`
* gan
* lsgan
* hinge
* wgan-gp
* dragan
* [realness](https://github.com/taki0112/RealnessGAN-Tensorflow)
* [sphere](https://github.com/taki0112/SphereGAN-Tensorflow)
### [vdb loss](https://arxiv.org/abs/1810.00821)
```python
d_bottleneck_loss = vdb_loss(real_mu, real_logvar, i_c) + vdb_loss(fake_mu, fake_logvar, i_c)
```### kl-divergence (z ~ N(0, 1))
```python
loss = kl_loss(mean, logvar)
```---
## Author
[Junho Kim](http://bit.ly/jhkim_ai)