Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tamasgal/thepipe

A simplistic, general purpose pipeline framework.
https://github.com/tamasgal/thepipe

data-processing data-processing-pipelines data-science hacktoberfest pipelines provenance python

Last synced: 22 days ago
JSON representation

A simplistic, general purpose pipeline framework.

Awesome Lists containing this project

README

        

thepipe
=======

.. image:: https://readthedocs.org/projects/thepipe/badge/?version=latest
:target: https://thepipe.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

.. image:: https://api.codacy.com/project/badge/Grade/20a35727ae364e08845b60bdeb4b233a
:alt: Codacy Badge
:target: https://www.codacy.com/app/tamasgal/thepipe?utm_source=github.com&utm_medium=referral&utm_content=tamasgal/thepipe&utm_campaign=Badge_Grade

.. image:: https://travis-ci.org/tamasgal/thepipe.svg?branch=master
:alt: Travis-CI Build Status
:target: https://travis-ci.org/tamasgal/thepipe

.. image:: http://codecov.io/github/tamasgal/thepipe/coverage.svg?branch=master
:alt: Test-coverage
:target: http://codecov.io/github/tamasgal/thepipe?branch=master

.. image:: https://img.shields.io/pypi/v/thepipe.svg?style=flat
:alt: PyPI Package latest release
:target: https://pypi.python.org/pypi/thepipe

A simplistic, general purpose pipeline framework, which can easily be
integrated into existing (analysis) chains and workflows.

Installation
------------
``thepipe`` can be installed via ``pip``::

pip install thepipe

Features
--------

- Easy to use interface and integration into existing workflows
- Automatic provenance tracking (set ``Provenance().outfile`` to dump it upon
program termination)
- Modules can be either subclasses of ``Module`` or bare python functions
- Data is passed via a simple Python dictionary from module to module (wrapped
in a class called ``Blob`` which adds some visual candy and error reporting)
- Integrated hierarchical logging system
- Colour coded log and print messages (``self.log()`` and ``self.cprint()`` in
``Modules``)
- Performance statistics for the whole pipeline and each module individually
- Clean exit when interrupting the pipeline with CTRL+C

The Pipeline
------------

Here is a basic example how to create a pipeline, add some modules to it, pass
some parameters and drain the pipeline.

Note that pipeline modules can either be vanilla (univariate) Python functions
or Classes which derive from ``thepipe.Module``.

.. code-block:: python

import thepipe as tp

class AModule(tp.Module):
def configure(self):
self.cprint("Configuring AModule")
self.max_count = self.get("max_count", default=23)
self.index = 0

def process(self, blob):
self.cprint("This is cycle #%d" % self.index)
blob['index'] = self.index
self.index += 1

if self.index > self.max_count:
self.log.critical("That's enough...")
raise StopIteration
return blob

def finish(self):
self.cprint("I'm done!")

def a_function_based_module(blob):
print("Here is the blob:")
print(blob)
return blob

pipe = tp.Pipeline()
pipe.attach(AModule, max_count=5) # pass any parameters to the module
pipe.attach(a_function_based_module)
pipe.drain() # without arguments it will drain until a StopIteration is raised

This will produce the following output:

.. code-block:: shell

2020-05-26 12:43:12 ++ AModule: Configuring AModule
Pipeline and module initialisation took 0.001s (CPU 0.001s).
2020-05-26 12:43:12 ++ AModule: This is cycle #0
Here is the blob:
Blob (1 entries):
'index' => 0
2020-05-26 12:43:12 ++ AModule: This is cycle #1
Here is the blob:
Blob (1 entries):
'index' => 1
2020-05-26 12:43:12 ++ AModule: This is cycle #2
Here is the blob:
Blob (1 entries):
'index' => 2
2020-05-26 12:43:12 ++ AModule: This is cycle #3
Here is the blob:
Blob (1 entries):
'index' => 3
2020-05-26 12:43:12 ++ AModule: This is cycle #4
Here is the blob:
Blob (1 entries):
'index' => 4
2020-05-26 12:43:12 ++ AModule: This is cycle #5
2020-05-26 12:43:12 CRITICAL ++ AModule: That's enough...
2020-05-26 12:43:12 ++ AModule: I'm done!
============================================================
5 cycles drained in 0.001284s (CPU 0.001475s). Memory peak: 27.01 MB
wall mean: 0.000070s medi: 0.000052s min: 0.000042s max: 0.000122s std: 0.000031s
CPU mean: 0.000070s medi: 0.000052s min: 0.000042s max: 0.000124s std: 0.000032s