Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/taozh2017/RGBD-SODsurvey
RGB-D Salient Object Detection: A Survey
https://github.com/taozh2017/RGBD-SODsurvey
benchmark light-field light-field-sod rgb-d saliency salient-object-detection sod survey
Last synced: 3 months ago
JSON representation
RGB-D Salient Object Detection: A Survey
- Host: GitHub
- URL: https://github.com/taozh2017/RGBD-SODsurvey
- Owner: taozh2017
- Created: 2020-06-15T08:28:21.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-08-01T14:45:50.000Z (over 1 year ago)
- Last Synced: 2024-08-01T04:02:08.458Z (6 months ago)
- Topics: benchmark, light-field, light-field-sod, rgb-d, saliency, salient-object-detection, sod, survey
- Language: MATLAB
- Homepage:
- Size: 70.9 MB
- Stars: 337
- Watchers: 13
- Forks: 31
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeai - RGB-D Salient Object Detection
- awesome-ai-awesomeness - RGB-D Salient Object Detection
README
# [RGB-D Salient Object Detection: A Survey](https://arxiv.org/abs/2008.00230)
Authors: [*Tao Zhou*](https://taozh2017.github.io), [*Deng-Ping Fan*](https://dpfan.net/), [*Ming-Ming Cheng*](https://mmcheng.net/), [*Jianbing Shen*](https://scholar.google.com/citations?user=_Q3NTToAAAAJ&hl=en), [*Ling Shao*](https://scholar.google.com/citations?user=z84rLjoAAAAJ&hl=en).This is a survey to review related RGB-D SOD models along with benchmark datasets, and provide a comprehensive evaluation for these models. We also collect related review papers for SOD and light field SOD models. If you have papers to recommend or any suggestions, please feel free to contact us.
:running: :running: :running: ***KEEP UPDATING***.
![alt text](./figures/Fig0.jpg)
*Fig.0: A brief chronology of RGB-D based SOD. The first early RGB-D based SOD work was the [DM](https://link.springer.com/content/pdf/10.1007/978-3-642-33709-3_8.pdf) model, proposed in 2012. Deep learning
techniques have been widely applied to RGB-D based SOD since 2017. More details can be found in our [paper](https://arxiv.org/pdf/2008.00230.pdf).*------
------## Content:
1. Related Reviews and Surveys to SOD
2. RGB-D SOD Models
3. RGB-D SOD Datasets
4. Light Field SOD
1. LF SOD Models
1. LF Datasets
5. Evaluation
1. Overall Evaluation
1. Attribute-based Evaluation
6. RGB-D SOD Benchmark
7. Citation------
------## Related Reviews and Surveys to SOD:
**No.** | **Year** | **Pub.** | **Title** | **Links**
:-: | :-: | :-: | :- | :-:
01 | 2015 | IEEE TIP | Salient object detection: A benchmark | [Paper](https://arxiv.org/pdf/1501.02741.pdf)/Project
02 | 2018 | IEEE TCSVT | Review of visual saliency detection with comprehensive information | [Paper](https://arxiv.org/pdf/1803.03391.pdf)/Project
03 | 2018 | ACM TIST | A review of co-saliency detection algorithms: Fundamentals, applications, and challenges | [Paper](https://arxiv.org/pdf/1604.07090.pdf)/Project
04 | 2018 | IEEE TSP | Advanced deep-learning techniques for salient and category-specific object detection: A survey| [Paper](https://ieeexplore.ieee.org/document/8253582)/Project
05 | 2018 | IJCV | Attentive systems: A survey | [Paper](https://link.springer.com/article/10.1007/s11263-017-1042-6)/Project
06 | 2018 | ECCV | Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground | [Paper](http://mftp.mmcheng.net/Papers/18ECCV-SOCBenchmark.pdf)/[Project](https://github.com/DengPingFan/SODBenchmark/)
07 | 2019 | CVM | Salient object detection: A survey | [Paper](https://link.springer.com/content/pdf/10.1007/s41095-019-0149-9.pdf)/Project
08 | 2019 | IEEE TNNLS | Object detection with deep learning: A review | [Paper](https://arxiv.org/pdf/1807.05511.pdf)/Project
09 | 2020 | arXiv | Light Field Salient Object Detection: A Review and Benchmark | [Paper](https://arxiv.org/pdf/2010.04968.pdf)/[Project](https://github.com/kerenfu/LFSOD-Survey)
10 | 2021 | IEEE TPAMI | Salient Object Detection in the Deep Learning Era: An In-Depth Survey | [Paper](https://arxiv.org/pdf/1904.09146.pdf)/[Project](https://github.com/wenguanwang/SODsurvey)------
------## RGB-D SOD Models:
:fire::fire::fire:Update (in 2023-07-26)**No.** | **Year** | **Model** |**Pub.** | **Title** | **Links**
:-: | :-: | :-: | :- | :- | :-:
:fire: 219 | 2023 |XMSNet| ACM MM | Object Segmentation by Mining Cross-Modal Semantics | [Paper](https://arxiv.org/pdf/2305.10469.pdf)/[Project](https://github.com/Zongwei97/XMSNet)
:fire: 218 | 2023 |PopNet| ICCV | Source-free Depth for Object Pop-out | [Paper](https://arxiv.org/pdf/2212.05370.pdf)/[Project](https://github.com/Zongwei97/PopNet)
:fire: 217 | 2023 |FCFNet| IEEE TSCVT | Feature Calibrating and Fusing Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/10185946)/Project
:fire: 216 | 2023 |AirSOD| IEEE TSCVT | AirSOD: A Lightweight Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/10184101)/Project
:fire: 215 | 2023 |CATNet| IEEE TMM | CATNet: A Cascaded and Aggregated Transformer Network For RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/10179145)/Project
214 | 2023 |--| arXiv | Hierarchical Cross-modal Transformer for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2302.08052.pdf)/Project
213| 2023 |HiDAnet| IEEE TIP | HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness | [Paper](https://ieeexplore.ieee.org/document/10091765)/[Project](https://github.com/Zongwei97/HIDANet/)
212 | 2023 |AFNet| Neurocomputing | Adaptive fusion network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231222015090)/[Project](https://github.com/clelouch/AFNet)
211 | 2023 |EGA-Net| Information Sciences | EGA-Net: Edge feature enhancement and global information attention network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0020025523000324)/[Project](https://github.com/guanyuzong/EGA-Net)
210 | 2022 |RFNet| 3DV | Robust RGB-D Fusion for Saliency Detection | [Paper](https://ieeexplore.ieee.org/document/10044460)/[Project](https://github.com/Zongwei97/RFnet)
209 | 2022 |--|IEEE TIP| Improving RGB-D Salient Object Detection via Modality-Aware Decoder | [Paper](https://ieeexplore.ieee.org/abstract/document/9894275)/[Project](https://github.com/MengkeSong/MaD)
208 | 2022 |--| ICIP | Multi-Modal Transformer for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9898069)/Project
207 | 2022 |--| AI | A cascaded refined rgb-d salient object detection network based on the attention mechanism | [Paper](https://link.springer.com/article/10.1007/s10489-022-04186-9)/Project
206 | 2022 |EFGNet| DSP | EFGNet: Encoder steered multi-modality feature guidance network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S105120042200392X)/Project
205 | 2022 |--| ICIP | Dynamic Selection Network For Rgb-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9897821)/Project
204 | 2022 |--| IEEE SPL | Cross-stage Multi-scale Interaction Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9956739)/Project
203 | 2022 |GCENet| JVCIR | GCENet: Global contextual exploration network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S1047320322002000)/Project
202 | 2022 |SiamRIR|ACCV | Multi-scale Residual Interaction for RGB-D Salient Object Detection | [Paper](https://openaccess.thecvf.com/content/ACCV2022/papers/Hu_Multi-scale_Residual_Interaction_for_RGB-D_Salient_Object_Detection_ACCV_2022_paper.pdf)/Project
201 | 2022 |SAFNet| ACCV | Scale Adaptive Fusion Network for RGB-D Salient Object Detection | [Paper](https://openaccess.thecvf.com/content/ACCV2022/papers/Kong_Scale_Adaptive_Fusion_Network_for_RGB-D_Salient_Object_Detection_ACCV_2022_paper.pdf)/Project
200 | 2022 |TBINet|ACCV| Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection | [Paper](https://openaccess.thecvf.com/content/ACCV2022/papers/Wang_Three-Stage_Bidirectional_Interaction_Network_for_Efficient_RGB-D_Salient_Object_Detection_ACCV_2022_paper.pdf)/[Project](https://github.com/AWORKERINKIKIMORE/TBINet)
199 | 2022 |--|Neurocomputing| Few-shot learning-based RGB-D salient object detection: A case study | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231222011055)/Project
198 | 2022 |--|ACM MM | Depth-inspired Label Mining for Unsupervised RGB-D Salient Object Detection | [Paper](https://dl.acm.org/doi/pdf/10.1145/3503161.3548037)/Project
197 | 2022 |RD3D|IEEE TNNLS | 3-D Convolutional Neural Networks for RGB-D Salient Object Detection and Beyond | [Paper](https://ieeexplore.ieee.org/abstract/document/9889257)/[Project](https://github.com/QianChen98/RD3D)
196 | 2022 |--| IEEE TIP | Middle-Level Feature Fusion for Lightweight RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9923611)/Project
195 | 2022 |--| Neurocomputing | Depth-aware inverted refinement network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231222014126)/Project
194 | 2022 |DCMNet| ESA | DCMNet: Discriminant and cross-modality network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0957417422020656)/Project
193 | 2022 |HINet| PR | Cross-modal hierarchical interaction network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320322006732)/[Project](https://github.com/RanwanWu/HINet)
192 | 2022 |CIR-Net| IEEE TIP | CIR-Net: Cross-modality interaction and refinement for RGB-D salient object detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9930882)/[arXiv](https://arxiv.org/pdf/2210.02843.pdf)/[Project](https://rmcong.github.io/proj_CIRNet.html)
191 | 2022 |MVSalNet | ECCV | MVSalNet:Multi-View Augmentation for RGB-D Salient Object Detection | [Paper](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136890268.pdf)/[Project](https://github.com/Heart-eartH/MVSalNet)
190 | 2022 |SPSN | ECCV | SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2207.07898.pdf)/[Project](https://github.com/Hydragon516/SPSN)
189 | 2022 |RLLNet | SCIS | RLLNet: a lightweight remaking learning network for saliency redetection on RGB-D images | [Paper](https://link.springer.com/article/10.1007/s11432-020-3337-9)/Project
188 | 2022 |-| IEEE TIP | Learning Implicit Class Knowledge for RGB-D Co-Salient Object Detection with Transformers | [Paper](https://ieeexplore.ieee.org/abstract/document/9810116)/Project
187 | 2022 |-| MTAP | A benchmark dataset and baseline model for co-salient object detection within RGB-D images | [Paper](https://link.springer.com/article/10.1007/s11042-021-11555-y)/Project
186 | 2022 |SA-DPNet| PR | SA-DPNet: Structure-aware dual pyramid network for salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320322001054)/Project
185 | 2022 |-| JPCS | RGBD salient object detection based on depth feature enhancement | [Paper](https://iopscience.iop.org/article/10.1088/1742-6596/2181/1/012008/meta)/Project
184 | 2022 |-| JCSC | Bifurcation Fusion Network for RGB-D Salient Object Detection | [Paper](https://www.worldscientific.com/doi/abs/10.1142/S0218126622502152)/Project
183 | 2022 |-| arXiv | Dynamic Message Propagation Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2206.09552.pdf)/Project
182 | 2022 |-| IEEE TMM | Depth-induced Gap-reducing Network for RGB-D Salient Object Detection: An Interaction, Guidance and Refinement Approach | [Paper](https://ieeexplore.ieee.org/abstract/document/9769984)/Project
181 | 2022 |-| arXiv | Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2206.03105.pdf)/Project
180 | 2022 |MoADNet| IEEE TCSVT | MoADNet: Mobile Asymmetric Dual-Stream Networks for Real-Time and Lightweight RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9789193)/Project
179 | 2022 |A2TPNet| Electronics | A2TPNet: Alternate Steered Attention and Trapezoidal Pyramid Fusion Network for RGB-D Salient Object Detection | [Paper](https://www.mdpi.com/2079-9292/11/13/1968)/Project
178 | 2022 |--| NPL | Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection | [Paper](https://link.springer.com/article/10.1007/s11063-022-10886-7)/Project
177 | 2022 |--| KBS | Boosting RGB-D salient object detection with adaptively cooperative dynamic fusion network | [Paper](https://www.sciencedirect.com/science/article/pii/S0950705122005998)/Project
176 | 2022 |C2DFNet| IEEE TMM | C2DFNet: Criss-Cross Dynamic Filter Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9813422)/[Project](https://github.com/OIPLab-DUT/C2DFNet)
175 | 2022 |MEANet| Neurocomputing | MEANet: Multi-modal edge-aware network for light field salient object detection | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231222003502)/[Project](https://github.com/jiangyao-scu/MEANet)
174 | 2022 |--| arXiv | Depth-Cooperated Trimodal Network for Video Salient Object Detection | [Paper](https://arxiv.org/abs/2202.06060)/Project
173 | 2022 |DFTR| arXiv | DFTR: Depth-supervised Fusion Transformer for Salient Object Detection | [Paper](https://arxiv.org/abs/2203.06429)/Project
172 | 2022 |--| JP: CS | Multi-level interactions for RGB-D object detection | [Paper](https://iopscience.iop.org/article/10.1088/1742-6596/2181/1/012003/meta)/Project
171 | 2022 |--| AAAI | Self-Supervised Pretraining for RGB-D Salient Object Detection | [Paper](https://www.aaai.org/AAAI22Papers/AAAI-4882.ZhaoX.pdf)/[Project](https://github.com/Xiaoqi-Zhao-DLUT/SSLSOD)
170 | 2022 |GroupTransNet| arXiv | GroupTransNet: Group Transformer Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/abs/2203.10785)/Project
169 | 2022 |GroupTransNet| arXiv | GroupTransNet: Group Transformer Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/abs/2203.10785)/Project
168 | 2022 |BGRDNet| MTAP | BGRDNet: RGB-D salient object detection with a bidirectional gated recurrent decoding network | [Paper](https://link.springer.com/article/10.1007/s11042-022-12799-y)/Project
167 | 2022 |LIANet| IEEE Access| LIANet: Layer Interactive Attention Network for RGB-D Salient Object Detectionn | [Paper](https://ieeexplore.ieee.org/abstract/document/9729233)/Project
166 | 2022 |AGRFNet| SP:IC| AGRFNet: Two-stage cross-modal and multi-level attention gated recurrent fusion network for RGB-D saliency detection | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0923596522000261)/Project
165 | 2022 |--| IEEE TIP| Weakly Supervised RGB-D Salient Object Detection With Prediction Consistency Training and Active Scribble Boosting | [Paper](https://ieeexplore.ieee.org/abstract/document/9720104)/Project
164 | 2022 |--| PR| Discriminative unimodal feature selection and fusion for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320321005392)/Project
163 | 2022 |MIA_DPD| Neurocomputing| Multi-modal interactive attention and dual progressive decoding network for RGB-D/T salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231222002971)/[Project](https://github.com/Liangyh18/MIA_DPD)
162 | 2022 |--| PR| Discriminative unimodal feature selection and fusion for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320321005392)/Project
161 | 2022 |--| ESA| Aggregate interactive learning for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0957417422001051)/Project
160 | 2022 |FCMNet| Neurocomputing| FCMNet: Frequency-aware cross-modality attention networks for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231222003848)/Project
159 | 2022 |--| PR| Encoder Deep Interleaved Network with Multi-scale Aggregation for RGB-D Salient Object Detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320322001479)/Project
158 | 2022 |--| ICLR| Promoting Saliency From Depth: Deep Unsupervised RGB-D Saliency Detection | [Paper](https://openreview.net/pdf?id=BZnnMbt0pW)/Project
157 | 2022 |FANet| SP:IC| FANet: Feature aggregation network for RGBD saliency detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0923596521002964)/Project
156 | 2022 |DCMF | IEEE TIP| Learning Discriminative Cross-Modality Features for RGB-D Saliency Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9678058)/[Project](https://github.com/fereenwong/DCMF)
155 | 2022 |DS-Net | IEEE TIP| Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images | [Paper](https://ieeexplore.ieee.org/abstract/document/9673131)/Project
154 | 2022 |CFIDNet | NCA| CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection | [Paper](https://link.springer.com/article/10.1007/s00521-021-06845-3)/[Project](https://github.com/clelouch/CFIDNet)
153 | 2022 |-- | IVC| Double cross-modality progressively guided network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0262885621002560)/Project
152 | 2022 |-- | PR|Discriminative unimodal feature selection and fusion for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320321005392)/Project
151 | 2022 |BPGNet | IEEE TCSVT |Bi-directional Progressive Guidance Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9686679)/Project
150 | 2022 |-- | ESA |Aggregate interactive learning for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0957417422001051)/Project
149 | 2021 |MobileSal | IEEE TPAMI | MobileSal: Extremely Efficient RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9647954)/[Project](https://github.com/yuhuan-wu/mobilesal)
148 | 2021 |PGFNet | IEEE TNNLS |RGB-D Point Cloud Registration Based on Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9350205)/Project
147 | 2021 |M2RNet | arXiv |M2RNet: Multi-modal and Multi-scale Refined Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/abs/2109.07922)/Project
146 | 2021 |MGSNet | 3DV |Modality-Guided Subnetwork for Salient Object Detection | [Paper](https://ieeexplore.ieee.org/document/9665910)/[Project](https://github.com/Zongwei97/MGSnet)
145 | 2021 |-- | TVC |Guided residual network for RGB-D salient object detection with efficient depth feature learning | [Paper](https://link.springer.com/article/10.1007/s00371-021-02106-5)/Project
144 | 2021 |-- | Neurocomputing |A cross-modal edge-guided salient object detection for RGB-D image | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231221007244)/Project
143 | 2021 |-- | CEI |A deep multimodal feature learning network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S004579062100029X)/Project
142 | 2021 |PGFNet | IEEE Access |Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9606676)/Project
141 | 2021 |-- | TVC |Multi-level progressive parallel attention guided salient object detection for RGB-D images | [Paper](https://link.springer.com/article/10.1007/s00371-020-01821-9)/Project
140 | 2021 |-- | EAAI | Multi-scale iterative refinement network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0952197621003213)/Project
139 | 2021 |-- | IEEE TMM | Employing Bilinear Fusion and Saliency Prior Information for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9392336)/Project
138 | 2021 |-- | PR | Context-aware network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320320304337)/Project
137 | 2021 |DSNet | IEEE TIP | Dynamic Selective Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9605221)/Project
136 | 2021 |ACFNet | arXiv | ACFNet: Adaptively-Cooperative Fusion Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/abs/2109.04627)/Project
135 | 2021 |AFI-Net | CIN | AFI-Net: Attention-Guided Feature Integration Network for RGBD Saliency Detection | [Paper](https://www.hindawi.com/journals/cin/2021/8861446/)/Project
134 | 2021 |JSM | NIPS | Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection | [Paper](https://papers.nips.cc/paper/2021/file/642e92efb79421734881b53e1e1b18b6-Paper.pdf)/[Project](https://github.com/jiwei0921/JSM)
133 | 2021 |PGFNet | IEEE Access | Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9606676)/Project
132 | 2021 |-- | PR | Discriminative unimodal feature selection and fusion for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320321005392)/Project
131 | 2021 |UTA | IEEE TIP| RGB-D Salient Object Detection With Ubiquitous Target Awareness | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9529069)/Project
130 | 2021 |SP-Net | ICCV| Specificity-preserving RGB-D Saliency Detection | [Paper](https://arxiv.org/pdf/2108.08162.pdf)/[Project](https://github.com/taozh2017/SPNet)
129 | 2021 |-- | ICCV| RGB-D Saliency Detection via Cascaded Mutual Information Minimization | Paper/[Project](https://github.com/JingZhang617/cascaded_rgbd_sod)
128 | 2021 |TMFNet | IEEE TETCI| TMFNet: Three-Input Multilevel Fusion Network for Detecting Salient Objects in RGB-D Images | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9512550)/Project
127 | 2021 |-- | SP| Multiscale multilevel context and multimodal fusion for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0165168420303091)/Project
126 | 2021 |-- | IEEE TMM |Employing Bilinear Fusion and Saliency Prior Information for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9392336)/Project
125 | 2021 |CAN | PR |Context-aware network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0031320320304337)/Project
124 | 2021 |-- | Neurocomputing |Rethinking feature aggregation for deep RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231220316921)/Project
123 | 2021 |-- | Neurocomputing |Circular Complement Network for RGB-D Salient Object Detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0925231221005944)/Project
122 | 2021 | LSF | IJCV | CNN-based RGB-D Salient Object Detection: Learn, Select and Fuse | [Paper](https://arxiv.org/pdf/1909.09309.pdf)/Project
121 | 2021 |TriTransNet | ACM MM | TriTransNet RGB-D Salient Object Detection with a Triplet Transformer Embedding Network | Paper/[Project](https://github.com/liuzywen/TriTransNet)
120 | 2021 |CDINet | ACM MM | Cross-modality Discrepant Interaction Network for RGB-D Salient Object Detection | Paper/Project
119 | 2021 |DFM-Net | ACM MM | Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2107.01779.pdf)/[Project](https://github.com/zwbx/DFM-Net)
118 | 2021 |VST | arXiv | Visual Saliency Transformer | [Paper](https://arxiv.org/pdf/2104.12099.pdf)/Project
117 | 2021 |-- | arXiv | Progressive Multi-scale Fusion Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2106.03941.pdf)/Project
116 | 2021 |-- | arXiv | Dynamic Knowledge Distillation with A Single Stream Structure for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2106.09517.pdf)/Project
115 | 2021 |MRINet | SPL | MRINet: Multilevel Reverse-Context Interactive-Fusion Network for Detecting Salient Objects in RGB-D Images | [Paper](https://ieeexplore.ieee.org/abstract/document/9466383)/Project
114 | 2021 |DSA^2F | CVPR | Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion | [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Sun_Deep_RGB-D_Saliency_Detection_With_Depth-Sensitive_Attention_and_Automatic_Multi-Modal_CVPR_2021_paper.pdf)/[Project](https://github.com/sunpeng1996/DSA2F)
113 | 2021 |DCF | CVPR | Calibrated RGB-D Salient Object Detection | [Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Ji_Calibrated_RGB-D_Salient_Object_Detection_CVPR_2021_paper.pdf)/[Project](https://github.com/jiwei0921/DCF)
112 | 2021 |BTS-Net | ICME| BTS-Net: Bi-directional Transfer-and-Selection Network for RGB-D Salient Object Detection | Paper/[Project](https://github.com/zwbx/BTS-Net)
111 | 2021 |CDNet | IEEE TIP| CDNet: Complementary Depth Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9366409)/[Project](https://github.com/blanclist/CDNet)
110 | 2021 |CCAFNet | IEEE TMM | CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images | [Paper](https://ieeexplore.ieee.org/abstract/document/9424966)/Project
109 | 2021 |ShuffeNet | arXiv | Middle-level Fusion for Lightweight RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2104.11543.pdf)/Project
108 | 2021 |-- | The Visual Computer | Guided residual network for RGB-D salient object detection with efficient depth feature learning | [Paper](https://link.springer.com/article/10.1007/s00371-021-02106-5)/Project
107 | 2021 |-- | IEEE TIP | Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/abstract/document/9371407)/[Project](https://github.com/MathLee/HAINet)
106 | 2021 |AFLNet | SP: IC | AFLNet: Adversarial focal loss network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/pii/S0923596521000497)/Project
105 | 2021 |-- | arXiv | Self-Supervised Representation Learning for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2101.12482.pdf)/Project
104 | 2021 |-- | Sensors | Saliency Detection with Bilateral Absorbing Markov Chain Guided by Depth Information | [Paper](https://www.mdpi.com/1424-8220/21/3/838)/Project
103 | 2021 |BPA-Net | DSP | Boundary-aware pyramid attention network for detecting salient objects in RGB-D images | [Paper](https://www.sciencedirect.com/science/article/pii/S1051200421000142)/Project
102 | 2021 |MobileSal | arXiv | MobileSal: Extremely Efficient RGB-D Salient Object Detection | [Paper](https://arxiv.org/abs/2012.13095)/Project
101 | 2021 |-- | The Visual Computer | A robust RGBD saliency method with improved probabilistic contrast and the global reference surface | [Paper](https://link.springer.com/article/10.1007/s00371-020-02050-w)/Project
100 | 2021 |RD3D | AAAI | RGB-D Salient Object Detection via 3D Convolutional Neural | Paper/[Project](https://github.com/PPOLYpubki/RD3D)
99 | 2021 |WGI-Net | CVM | WGI-Net: A weighted group integration network for RGB-D salient object detection | [Paper](https://link.springer.com/article/10.1007/s41095-020-0200-x)/Project
98 | 2021 |JL-DCF | IEEE TPAMI | Siamese Network for RGB-D Salient Object Detection and Beyond | [Paper](https://arxiv.org/pdf/2008.12134.pdf)/[Project](https://github.com/kerenfu/JLDCF)
97 | 2020 |CRACE | arXiv | A Unified Structure for Efficient RGB and RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2012.00437.pdf)/Project
96 | 2020 |EF-Net | PR | EF-Net: A novel enhancement and fusion network for RGB-D saliency detection | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0031320320305434)/Project
95 | 2020 |SMAC | arXiv (CVPR extension) | Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection| [Paper](https://arxiv.org/pdf/2010.05537.pdf)/[Project](https://github.com/nnizhang/SMAC)
94 | 2020 |DCMF | IEEE TIP | RGBD Salient Object Detection via Disentangled Cross-Modal Fusion| [Paper](https://ieeexplore.ieee.org/document/9165931)/[Project](https://github.com/haochen593/Disen_Fuse_TIP2020)
93 | 2020 |MMNet | ACM MM | MMNet: Multi-Stage and Multi-Scale Fusion Network for RGB-D Salient Object Detection | [Paper](https://dl.acm.org/doi/pdf/10.1145/3394171.3413523)/Project
92 | 2020 |DASNet | ACM MM | Is depth really necessary for salient object detection? | [Paper](https://arxiv.org/pdf/2006.00269.pdf)/[Project](http://cvteam.net/projects/2020/DASNet/)
91 | 2020 |FRDT | ACM MM | Feature Reintegration over Differential Treatment: A Top-down and Adaptive Fusion Network for RGB-D Salient Object Detection | [Paper](https://dl.acm.org/doi/pdf/10.1145/3394171.3413969)/[Project](https://github.com/jack-admiral/ACM-MM-FRDT)
90 | 2020 | HANet | Appl. Sci. | Hybrid‐Attention Network for RGB‐D Salient Object Detection | Paper/Project
89 | 2020 | DQSD | IEEE TIP | Depth Quality Aware Salient Object Detection | [Paper](https://arxiv.org/pdf/2008.04159.pdf)/[Project](https://github.com/qdu1995/DQSD)
88 | 2020 | DQAM | arXiv | Knowing Depth Quality In Advance: A Depth Quality Assessment Method For RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2008.04157.pdf)/Project
87 | 2020 | DRLF | IEEE TIP | Data-Level Recombination and Lightweight Fusion Scheme for RGB-D Salient Object Detection | [Paper](http://probb268dca.pic5.ysjianzhan.cn/upload/TIP20_WXH_q02i.pdf)/[Project](https://github.com/XueHaoWang-Beijing/DRLF)
86 | 2020 | MCINet | arXiv | MCINet: Multi-level Cross-modal Interaction Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2007.14352.pdf)/Project
85 | 2020 | PGAR | ECCV | Progressively Guided Alternate Refinement Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2008.07064.pdf)/[Project](https://github.com/ShuhanChen/PGAR_ECCV20)
84 | 2020 | ATSA | ECCV | Asymmetric Two-Stream Architecture for Accurate RGB-D Saliency Detection | [Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730375.pdf)/[Project](https://github.com/sxfduter/ATSA)
83 | 2020 | BBS-Net| ECCV | BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network | [Paper](https://arxiv.org/pdf/2007.02713.pdf)/[Project](https://github.com/zyjwuyan/BBS-Net)
82 | 2020 | CoNet | ECCV | Accurate RGB-D Salient Object Detection via Collaborative Learning | [Paper](https://arxiv.org/pdf/2007.11782.pdf)/[Project](https://github.com/jiwei0921/CoNet)
81 | 2020 | DANet | ECCV | A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2007.06811.pdf)/[Project](https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency)
80 | 2020 | CMMS | ECCV | RGB-D salient object detection with cross-modality modulation and selection | [Paper](https://arxiv.org/pdf/2007.07051.pdf)/[Project](https://github.com/Li-Chongyi/cmMS-ECCV20)
79 | 2020 | CAS-GNN| ECCV | Cascade graph neural networks for RGB-D salient object detection | [Paper](https://arxiv.org/pdf/2008.03087.pdf)/[Project](https://github.com/LA30/Cas-Gnn)
78 | 2020 | HDFNet | ECCV | Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2007.06227.pdf)/[Project](https://github.com/lartpang/HDFNet)
77 | 2020 | CMWNet | ECCV | Cross-modal weighting network for RGB-D salient object detection | [Paper](https://arxiv.org/pdf/2007.04901.pdf)/[Project](https://github.com/MathLee/CMWNet)
76 | 2020 | UC-Net | CVPR | UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders | [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_UC-Net_Uncertainty_Inspired_RGB-D_Saliency_Detection_via_Conditional_Variational_Autoencoders_CVPR_2020_paper.pdf)/[Project](https://github.com/JingZhang617/UCNet)
75 | 2020 | S2MA | CVPR | Learning selective self-mutual attention for RGB-D saliency detection | [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_Learning_Selective_Self-Mutual_Attention_for_RGB-D_Saliency_Detection_CVPR_2020_paper.pdf)/[Project](https://github.com/nnizhang/S2MA)
74 | 2020 | SSF | CVPR | Select, supplement and focus for RGB-D saliency detection | [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Select_Supplement_and_Focus_for_RGB-D_Saliency_Detection_CVPR_2020_paper.pdf)/[Project](https://github.com/OIPLab-DUT/CVPR_SSF-RGBD)
73 | 2020 | A2dele | CVPR | A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection | [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Piao_A2dele_Adaptive_and_Attentive_Depth_Distiller_for_Efficient_RGB-D_Salient_CVPR_2020_paper.pdf)/[Project](https://github.com/OIPLab-DUT/CVPR2020-A2dele)
72 | 2020 | JL-DCF | CVPR | JL-DCF: Joint learning and densely-cooperative fusion framework for RGB-D salient object detection | [Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Fu_JL-DCF_Joint_Learning_and_Densely-Cooperative_Fusion_Framework_for_RGB-D_Salient_CVPR_2020_paper.pdf)/[Project](https://github.com/kerenfu/JLDCF)
71 | 2020 | D3Net |IEEE TNNLS | Rethinking RGB-D salient object detection: models, datasets, and large-scale benchmarks | [Paper](https://arxiv.org/pdf/1907.06781.pdf)/[Project](https://github.com/DengPingFan/D3NetBenchmark)
70 | 2020 | RGBS |MTAP | Salient object detection for RGB-D images by generative adversarial network | [Paper](https://link.springer.com/article/10.1007/s11042-020-09188-8)/Project
69 | 2020 | GFNet |IEEE SPL | GFNet: Gate fusion network with res2net for detecting salient objects in RGB-D images | [Paper](https://ieeexplore.ieee.org/document/9090350)/Project
68 | 2020 | SDF | IEEE TIP | Improved saliency detection in RGB-D images using two-phase depth estimation and selective deep fusion | [Paper](https://ieeexplore.ieee.org/document/8976428)/Project
67 | 2020 | ICNet | IEEE TIP | ICNet: Information Conversion Network for RGB-D Based Salient Object Detection| [Paper](https://ieeexplore.ieee.org/document/9024241)/[Project](https://github.com/MathLee/ICNet-for-RGBD-SOD)
66 | 2020 |Triple-Net | IEEE SPL | Triple-complementary network for RGB-D salient object detection| [Paper](https://ieeexplore.ieee.org/document/9076277)/Project
65 | 2020 |ASIF-Net | IEEE TCYB | ASIF-Net: Attention steered interweave fusion network for RGB-D salient object detection| [Paper](https://ieeexplore.ieee.org/document/8998588)/[Project](https://github.com/Li-Chongyi/ASIF-Net)
64 | 2020 |BiANet | IEEE TIP | Bilateral Attention Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2004.14582.pdf)/Project
63 | 2020 |PGHF | IEEE Access | Multi-modal weights sharing and hierarchical feature fusion for rgbd salient object detection | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8981965)/Project
62 | 2020 |cmSalGAN | IEEE TMM | cmSalGAN: RGB-D Salient Object Detection with Cross-View Generative Adversarial Networks | [Paper](https://arxiv.org/pdf/1912.10280.pdf)/Project
61 | 2020 | CoCNN | PR | CoCNN: RGB-D deep fusion for stereoscopic salient object detection | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0031320320301321)/Project
60 | 2020 | GFNet | Neurocomputing | A cross-modal adaptive gated fusion generative adversarial network for RGB-D salient object detection | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231220300904)/Project
59 | 2020 | AttNet| IVC | Attention-guided RGBD saliency detection using appearance information | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0262885620300202)/Project
58 | 2020 | SSDP |arXiv | Synergistic saliency and depth prediction for RGB-D saliency detection | [Paper](https://arxiv.org/pdf/2007.01711.pdf)/Project
57 | 2020 |DPANet | arXiv | DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/2003.08608.pdf)/Project
56 | 2019 | DSD | JVCIR | Depth-aware saliency detection using convolutional neural networks | [Paper](https://www.sciencedirect.com/science/article/pii/S104732031930118X)/Project
55 | 2019 | DMRA | ICCV | Depth-induced Multi-scale Recurrent Attention Network for Saliency Detection | [Paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Piao_Depth-Induced_Multi-Scale_Recurrent_Attention_Network_for_Saliency_Detection_ICCV_2019_paper.pdf)/[Project](https://github.com/jiwei0921/DMRA)
54 | 2019 | CPFP | CVPR | Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection | [Paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhao_Contrast_Prior_and_Fluid_Pyramid_Integration_for_RGBD_Salient_Object_CVPR_2019_paper.pdf)/[Project](https://github.com/JXingZhao/ContrastPrior)
53 | 2019 | EPM | IEEE Access | Co-saliency detection for rgbd images based on effective propagation mechanism | [Paper](https://ieeexplore.ieee.org/document/8849990)/Project
52 | 2019 | AFNet | IEEE Access | Adaptive Fusion for RGB-D Salient Object Detection | [Paper](https://arxiv.org/pdf/1901.01369.pdf)/[Project](https://github.com/Lucia-Ningning/Adaptive_Fusion_RGBD_Saliency_Detection)
51 | 2019 | DGT | IEEE TCYB | Going from RGB to RGBD saliency: A depth-guided transformation model | [Paper](https://www.researchgate.net/publication/335360400_Going_From_RGB_to_RGBD_Saliency_A_Depth-Guided_Transformation_Model)/[Project](https://rmcong.github.io/proj_RGBD_sal_DTM_tcyb.html)
50 | 2019 | DCMF | IEEE TCYB | Discriminative cross-modal transfer learning and densely cross-level feedback fusion for RGB-D salient object detection | [Paper](https://ieeexplore.ieee.org/document/8820129)/Project
49 | 2019 | TANet | IEEE TIP | Three-stream attention-aware network for RGB-D salient object detection | [Paper](https://ieeexplore.ieee.org/document/8603756)/Project
48 | 2019 | MMCI | PR | Multi-modal fusion network with multi-scale multi-path and cross-modal interactions| [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0031320318303054)/Project
47 | 2019 | PDNet | ICME | Prior-model guided depth-enhanced network for salient object detection| [Paper](https://arxiv.org/pdf/1803.08636.pdf)/[Project](https://github.com/cai199626/PDNet)
46 | 2019 | CAFM | IEEE TSMC | Global and Local-Contrast Guides Content-Aware Fusion for RGB-D Saliency Prediction | [Paper](https://ieeexplore.ieee.org/document/8941002)/Project
45 | 2019 | DIL | MTAP | Salient object segmentation based on depth-aware image layering | [Paper](https://link.springer.com/article/10.1007/s11042-018-6736-4)/Project
44 | 2019 | TSRN | ICIP | Two-stream refinement network for RGB-D saliency detection | [Paper](https://ieeexplore.ieee.org/document/8803653)/Project
43 | 2019 | MLF | SPL | RGB-D salient object detection by a CNN with multiple layers fusion | [Paper](https://ieeexplore.ieee.org/document/8638984)/Project
42 | 2019 | SSRC | Neurocomputing | Salient object detection for RGB-D image by single stream recurrent convolution neural network | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231219309403)/Project
41 | 2018 | CDB | Neurocomputing | Stereoscopic saliency model using contrast and depth-guided-background prior | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231217317034)/Project
40 | 2018 | ACCF | IROS | Attention-Aware Cross-Modal Cross-Level Fusion Network for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/document/8594373)/Project
39 | 2018 | SCDL | ICDSP | Rgbd salient object detection using spatially coherent deep learning framework | [Paper](https://ieeexplore.ieee.org/document/8631584)/Project
38 | 2018 | PCF | CVPR | Progressively complementarityaware fusion network for RGB-D salient object detection | [Paper](https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Progressively_Complementarity-Aware_Fusion_CVPR_2018_paper.pdf)/[Project](https://github.com/haochen593/PCA-Fuse_RGBD_CVPR18)
37 | 2018 | CTMF | IEEE TCYB | CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion | [Paper](https://ieeexplore.ieee.org/document/8091125)/[Project](https://github.com/haochen593/CTMF)
36 | 2018 | ICS | IEEE TIP | Co-saliency detection for RGBD images based on multi-constraint feature matching and cross label propagation | [Paper](https://arxiv.org/pdf/1710.05172.pdf)/Project
35 | 2018 | HSCS | IEEE TMM | HSCS: Hierarchical sparsity based co-saliencydetection for RGBD images | [Paper](https://arxiv.org/pdf/1811.06679.pdf)/[Project](https://github.com/rmcong/Results-for-2018TMM-HSCS)
34 | 2017 | ISC | SIVP | An integration of bottom-up and top-down salient cueson rgb-d data: saliency from objectness versus non-objectness | [Paper](https://arxiv.org/pdf/1807.01532.pdf)/Project
33 | 2017 | MCLP | IEEE TCYB | An iterative co-saliency framework for RGBD images | [Paper](https://arxiv.org/pdf/1711.01371.pdf)/Project
32 | 2017 | DF | IEEE TIP | RGBD Salient Object Detection via Deep Fusion | [Paper](https://arxiv.org/pdf/1607.03333.pdf)/[Project](https://pan.baidu.com/s/1Y-PqAjuH9xREBjfl7H45HA)
31 | 2017 | MDSF | IEEE TIP | Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning | [Paper](https://ieeexplore.ieee.org/document/7938352)/[Project](https://github.com/ivpshu/Depth-aware-salient-object-detection-and-segmentation-via-multiscale-discriminative-saliency-fusion-)
30 | 2017 | MFF | IEEE SPL | RGB-D saliency object detection via minimum barrier distance transformand saliency fusion | [Paper](https://wanganzhi.github.io/papers/SPL17.pdf)/Project
29 | 2017 | TPF | ICCVW | A Three-Pathway Psychobiological Framework of Salient Object Detection Using Stereoscopic Technology | [Paper](https://ieeexplore.ieee.org/document/8265566)/Project
28 | 2017 | CDCP | ICCVW | An innovative salient object detection using center-dark channel prior | [Paper](https://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w22/Zhu_An_Innovative_Salient_ICCV_2017_paper.pdf)/[Project](https://github.com/ChunbiaoZhu/ACVR2017)
27 | 2017 | BED | ICCVW | Learning RGB-D Salient Object Detection using background enclosure, depth contrast, and top-down features | [Paper](https://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w40/Shigematsu_Learning_RGB-D_Salient_ICCV_2017_paper.pdf)/[Project](https://github.com/sshige/rgbd-saliency)
26 | 2017 | MFLN | ICCVS | RGB-D Saliency Detection by Multi-stream Late Fusion Network | [Paper](https://link.springer.com/chapter/10.1007/978-3-319-68345-4_41)/Project
25 | 2017 | M3Net | IROS | M3Net: Multi-scale multi-path multi-modal fusion network and example application to RGB-D salient object detection | [Paper](https://ieeexplore.ieee.org/abstract/document/8206370)/Project
24 | 2017 | HOSO | DICTA | HOSO: Histogram of Surface Orientation for RGB-D Salient Object Detection | [Paper](https://ieeexplore.ieee.org/document/8227440)/Project
23 | 2016 | GM | ACCV | Visual Saliency detection for RGB-D images with generative mode | [Paper](https://link.springer.com/chapter/10.1007/978-3-319-54193-8_2)/Project
22 | 2016 | DSF | ICASSP | Depth-aware saliency detection using discriminative saliency fusion | [Paper](https://ieeexplore.ieee.org/document/7471952)/Project
21 | 2016 | DCI | ICASSP | Saliency analysis based on depth contrast increased | [Paper](http://sites.nlsde.buaa.edu.cn/~shenghao/Download/publications/2016/9.Saliency%20analysis%20based%20on%20depth%20contrast%20increased.pdf)/Project
20 | 2016 | BF | ICPR | RGB-D saliency detection under Bayesian framework | [Paper](https://ieeexplore.ieee.org/document/7899911)/Project
19 | 2016 | DCMC | IEEE SPL | Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion | [Paper](https://ieeexplore.ieee.org/document/7457641)/[Project](https://github.com/rmcong/Code-for-DCMC-method)
18 | 2016 | SE | ICME | Salient object detection for RGB-D image via saliency evolution | [Paper](https://ieeexplore.ieee.org/document/7552907)/Project
17 | 2016 | LBE | CVPR | Local Background Enclosure for RGB-D Salient Object Detection| [Paper](https://www.cv-foundation.org/openaccess/content_cvpr_2016/app/S10-09.pdf)/[Project](http://users.cecs.anu.edu.au/~u4673113/lbe.html)
16 | 2016 | PRC | IEEE Access | Improving RGBD Saliency Detection Using Progressive Region Classification and Saliency Fusion| [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762806)/Project
15 | 2015 | SF | CAC | Selective features for RGB-D saliency | [Paper](https://ieeexplore.ieee.org/document/7382554)/Project
14 | 2015 | MGMR | ICIP | RGB-D saliency detection via mutual guided manifold ranking | [Paper](https://ieeexplore.ieee.org/document/7350882)/Project
13 | 2015 | SRD | ICRA | Salient Regions Detection for Indoor Robots using RGB-D Data | [Paper](http://www.cogsys.cs.uni-tuebingen.de/publikationen/2015/Jiang_ICRA15.pdf)/Project
12 | 2015 | DIC | TVC | Depth incorporating with color improves salient object detection | [Paper](https://link.springer.com/article/10.1007/s00371-014-1059-6)/Project
11 | 2015 | SFP | ICIMCS | Salient object detection in RGB-D image based on saliency fusion and propagation | [Paper](https://dl.acm.org/doi/10.1145/2808492.2808551)/Project
10 | 2015 | GP | CVPRW | Exploiting global priors for RGB-D saliency detection | [Paper](https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W14/papers/Ren_Exploiting_Global_Priors_2015_CVPR_paper.pdf)/[Project](https://github.com/JianqiangRen/Global_Priors_RGBD_Saliency_Detection)
09 | 2014 | ACSD | ICIP | Depth saliency based on anisotropic center-surround difference | [Paper](https://projet.liris.cnrs.fr/imagine/pub/proceedings/ICIP-2014/Papers/1569913831.pdf)/[Project](https://github.com/HzFu/DES_code)
08 | 2014 | DESM | ICIMCS | Depth Enhanced Saliency Detection Method | [Paper](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf)/Project
07 | 2014 | LHM | ECCV | RGBD Salient Object Detection: A Benchmark and Algorithms | [Paper](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf)/[Project](https://sites.google.com/site/rgbdsaliency/code)
06 | 2014 | SRDS | ICDSP | Salient region detection for stereoscopic images | [Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900706)/Project
05 | 2013 | SOS | Neurocomputing | Depth really Matters: Improving Visual Salient Region Detection with Depth | [Paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231213002981)/Project
04 | 2013 | RC | BMVC | Depth really Matters: Improving Visual Salient Region Detection with Depth | [Paper](http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/images/ConferencePapers/2013/cv_deepth-really.pdf)/Project
03 | 2013 | LS | BMVC | An In Depth View of Saliency | [Paper](http://www.cs.utah.edu/~thermans/papers/ciptadi-bmvc2013.pdf)/Project
02 | 2012 | RCM | ICCSE | Depth combined saliency detection based on region contrast model | [Paper](https://ieeexplore.ieee.org/document/6295184)/Project
01 | 2012 | DM | ECCV | Depth matters: Influence of depth cues on visual saliency | [Paper](https://link.springer.com/content/pdf/10.1007/978-3-642-33709-3_8.pdf)/Project------
------**No.** |**Dataset** | **Year** | **Pub.** |**Size** | **#Obj.** | **Types** | **Resolution** | **Download**
:-: | :-: | :-: | :- | :- | :-:| :-: | :-: | :-:
1 | [**STERE**](http://dpfan.net/wp-content/uploads/STERE_dataset_CVPR12.pdf) |2012 |CVPR | 1000 | ~One |Internet | [251-1200] * [222-900] | [link](https://github.com/DengPingFan/D3NetBenchmark/)
2 | [**GIT**](http://www.bmva.org/bmvc/2013/Papers/paper0112/abstract0112.pdf) |2013 |BMVC | 80 | Multiple |Home environment | 640 * 480 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
3 | [**DES**](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf) |2014 |ICIMCS | 135 | One |Indoor | 640 * 480 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
4 | [**NLPR**](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf) |2014 |ECCV | 1000 | Multiple |Indoor/outdoor | 640 * 480, 480 * 640 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
5 | [**LFSD**](http://dpfan.net/wp-content/uploads/LFSD_dataset_CVPR14.pdf) |2014 |CVPR | 100 | One |Indoor/outdoor | 360 * 360 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
6 | [**NJUD**](http://dpfan.net/wp-content/uploads/NJU2K_dataset_ICIP14.pdf) |2014 |ICIP | 1985 | ~One |Moive/internet/photo | [231-1213] * [274-828] | [link](https://github.com/DengPingFan/D3NetBenchmark/)
7 | [**SSD**](http://dpfan.net/wp-content/uploads/SSD_dataset_ICCVW17.pdf) |2017 |ICCVW | 80 | Multiple |Movies | 960 *1080 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
8 | [**DUT-RGBD**](https://openaccess.thecvf.com/content_ICCV_2019/papers/Piao_Depth-Induced_Multi-Scale_Recurrent_Attention_Network_for_Saliency_Detection_ICCV_2019_paper.pdf) |2019 |ICCV | 1200 | Multiple |Indoor/outdoor | 400 * 600 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
9 | [**SIP**](http://dpfan.net/wp-content/uploads/SIP_dataset_TNNLS20.pdf) |2020 |TNNLS | 929 | Multiple |Person in wild | 992 * 774 | [link](https://github.com/DengPingFan/D3NetBenchmark/)
10 | [**ReDWeb-S**](https://arxiv.org/pdf/2010.05537.pdf) |2020 |arXiv | 3179 | Multiple |Diversity | [133-937] * [132-996] | [link](https://github.com/nnizhang/SMAC)
11 | [**COME15K**](https://arxiv.org/pdf/2010.05537.pdf) |2021 |ICCV | 15K | Multiple |Diversity | -- | [link](https://github.com/JingZhang617/cascaded_rgbd_sod)------
------
## Light Field SOD:**No.** | **Year** | **Model** |**Pub.** | **Title** | **Links**
:-: | :-: | :-: | :- | :- | :-:
01 | 2014 | LFS | CVPR | Saliency detection on light field | [Paper](https://sites.duke.edu/nianyi/files/2020/06/Li_Saliency_Detection_on_2014_CVPR_paper.pdf)/[Project](https://sites.duke.edu/nianyi/publication/saliency-detection-on-light-field/)
02 | 2015 | WSC | CVPR | A weighted sparse coding framework for saliency detection | [Paper](https://openaccess.thecvf.com/content_cvpr_2015/papers/Li_A_Weighted_Sparse_2015_CVPR_paper.pdf)/[Project](https://www.researchgate.net/publication/294874666_Code_WSC)
03 | 2015 | DILF | IJCAI | Saliency detection with a deeper investigationof light field | [Paper](https://www.ijcai.org/Proceedings/15/Papers/313.pdf)/[Project](https://github.com/pencilzhang/lightfieldsaliency_ijcai15)
04 | 2016 | RL | ICASSP | Relative location for light field saliency detection | [Paper](http://sites.nlsde.buaa.edu.cn/~shenghao/Download/publications/2016/11.Relative%20location%20for%20light%20field%20saliency%20detection.pdf)/Project
05 | 2017 | MA | ACM TOMM | Saliency detection on light field: A multi-cue approach | [Paper](http://www.linliang.net/wp-content/uploads/2017/07/ACMTOM_Saliency.pdf)/Project
06 | 2017 | BIF | NPL | A two-stage bayesian integration framework for salient object detection on light field | [Paper](https://link.springer.com/article/10.1007/s11063-017-9610-x)/Project
07 | 2017 | LFS | IEEE TPAMI | Saliency Detection on Light Field | [Paper](https://ieeexplore.ieee.org/document/7570181)/[Project](https://sites.duke.edu/nianyi/publication/saliency-detection-on-light-field/)
08 | 2017 | RLM | ICIVC | Saliency detection with relative location measure in light field image | [Paper](https://ieeexplore.ieee.org/document/7984449/)/Project
09 | 2017 | SGDC | CVPR | Salience guided depth calibration for perceptually optimized compressive light field 3D display | [Paper](https://ieeexplore.ieee.org/document/8578315/)/Project
10 | 2018 | DCA | FiO | Depth-induced cellular automata for light field saliency | [Paper](https://ieeexplore.ieee.org/document/8866752)/Project
11 | 2019 | DLLF | ICCV | Deep learning for light field saliency detection | [Paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Deep_Learning_for_Light_Field_Saliency_Detection_ICCV_2019_paper.pdf)/[Project](https://github.com/OIPLab-DUT/ICCV2019_Deeplightfield_Saliency)
12 | 2019 | DLSD | IJCAI | Deep light-field-driven saliency detection from a single view | [Paper](https://www.ijcai.org/Proceedings/2019/0127.pdf)/Project
13 | 2019 | Molf | NIPS | Memory-oriented decoder for light field salient object detection | [Paper](https://papers.nips.cc/paper/8376-memory-oriented-decoder-for-light-field-salient-object-detection.pdf)/[Project](https://github.com/OIPLab-DUT/MoLF)
14 | 2020 | ERNet | AAAI | Exploit and replace: An asymmetrical two-stream architecture for versatile light field saliency detection | [Paper](https://www.aiide.org/ojs/index.php/AAAI/article/view/6860)/Project
15 | 2020 | DCA | IEEE TIP | Saliency detection via depth-induced cellular automata onlight field | [Paper](https://ieeexplore.ieee.org/document/8866752)/Project
16 | 2020 | RDFD | MTAP | Region-based depth feature descriptor for saliency detection light field | [Paper](https://link.springer.com/article/10.1007%2Fs11042-020-08890-x)/Project
17 | 2020 | LFNet | IEEE TIP | LFNet light field fusion network for salient object detection | [Paper](https://ieeexplore.ieee.org/document/9082882)/[Project](https://github.com/jiwei0921/LFNet)
18 | 2020 | LFDCN | IEEE TIP | Light field saliency detection with deep convolutional networks | [Paper](https://arxiv.org/pdf/1906.08331.pdf)/[Project](https://github.com/pencilzhang/MAC-light-field-saliency-net)**No.** |**Dataset** | **Year** | **Pub.** |**Size** | **Description** | **Download**
:-: | :-: | :-: | :- | :- | :-:| :-:
1 | [**LFSD**](https://sites.duke.edu/nianyi/files/2020/06/Li_Saliency_Detection_on_2014_CVPR_paper.pdf) |2014 |CVPR | 100 | It contains 60 indoor and 40 outdoor scenes, and most scenes consist of only one salient object | [link](https://sites.duke.edu/nianyi/publication/saliency-detection-on-light-field/)
2 | [**HFUT**](http://www.linliang.net/wp-content/uploads/2017/07/ACMTOM_Saliency.pdf) |2017 |ACM TOMM | 255 | Most scenes contain multipleobjects that appear within different locations and scales under complex background clutter | [link](https://github.com/pencilzhang/HFUT-Lytro-dataset)
3 | [**HFUT**](http://www.linliang.net/wp-content/uploads/2017/07/ACMTOM_Saliency.pdf) |2017 |ACM TOMM | 255 | Most scenes contain multipleobjects that appear within different locations and scales under complex background clutter | [link](https://github.com/pencilzhang/HFUT-Lytro-dataset)
4 | [**DUTLF-FS**](https://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Deep_Learning_for_Light_Field_Saliency_Detection_ICCV_2019_paper.pdf) |2019 |ICCV | 1465 | It contains several challenges, including lower contrast between salient objects and cluttered background, multiple disconnected salient objects, and dark or strong light conditions | [link](https://github.com/OIPLab-DUT/ICCV2019_Deeplightfield_Saliency)
5 | [**DUTLF-MV**](https://www.ijcai.org/Proceedings/2019/0127.pdf) |2019 |IJCAI | 1580 | Each light field consists of multi-view images and a corresponding ground truth | [link](https://github.com/TuesdayT/IJCAI2019-Deep-Light-Field-Driven-Saliency-Detection-from-A-Single-View)
6 | [**Lytro Illum**](https://arxiv.org/pdf/1906.08331.pdf) |2020 |IEEE TIP | 640 | It includes several challenging factors, e.g., inconsistent illumi?nation conditions, and small salient objects existing in a similar or cluttered background | [link](https://github.com/pencilzhang/MAC-light-field-saliency-net)------
------![alt text](./figures/Fig_overall.jpg)
*Fig.1: A comprehensive evaluation for 24 representative RGB-D based SOD models, including [LHM](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf), [ACSD](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf), [DESM](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf),
[GP](https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W14/papers/Ren_Exploiting_Global_Priors_2015_CVPR_paper.pdf),
[LBE](https://www.cv-foundation.org/openaccess/content_cvpr_2016/app/S10-09.pdf),
[DCMC](https://ieeexplore.ieee.org/document/7457641),
[SE](https://ieeexplore.ieee.org/document/7552907),
[CDCP](https://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w22/Zhu_An_Innovative_Salient_ICCV_2017_paper.pdf),
[CDB](https://www.sciencedirect.com/science/article/abs/pii/S0925231217317034),
[DF](https://arxiv.org/pdf/1607.03333.pdf),
[PCF](https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Progressively_Complementarity-Aware_Fusion_CVPR_2018_paper.pdf),
[CTMF](https://ieeexplore.ieee.org/document/8091125),
[CPFP](https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhao_Contrast_Prior_and_Fluid_Pyramid_Integration_for_RGBD_Salient_Object_CVPR_2019_paper.pdf),
[TANet](https://ieeexplore.ieee.org/document/8603756),
[AFNet](https://arxiv.org/pdf/1901.01369.pdf),
[MMCI](https://www.sciencedirect.com/science/article/abs/pii/S0031320318303054),
[DMRA](https://openaccess.thecvf.com/content_ICCV_2019/papers/Piao_Depth-Induced_Multi-Scale_Recurrent_Attention_Network_for_Saliency_Detection_ICCV_2019_paper.pdf),
[D3Net](https://arxiv.org/pdf/1907.06781.pdf),
[SSF](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_Select_Supplement_and_Focus_for_RGB-D_Saliency_Detection_CVPR_2020_paper.pdf),
[A2dele](https://openaccess.thecvf.com/content_CVPR_2020/papers/Piao_A2dele_Adaptive_and_Attentive_Depth_Distiller_for_Efficient_RGB-D_Salient_CVPR_2020_paper.pdf),
[S2MA](https://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_Learning_Selective_Self-Mutual_Attention_for_RGB-D_Saliency_Detection_CVPR_2020_paper.pdf),
[ICNet](https://ieeexplore.ieee.org/document/9024241),
[JL-DCF](https://openaccess.thecvf.com/content_CVPR_2020/papers/Fu_JL-DCF_Joint_Learning_and_Densely-Cooperative_Fusion_Framework_for_RGB-D_Salient_CVPR_2020_paper.pdf), and
[UC-Net](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_UC-Net_Uncertainty_Inspired_RGB-D_Saliency_Detection_via_Conditional_Variational_Autoencoders_CVPR_2020_paper.pdf).
We obtain the terms of $S_{\alpha}$ and MAE values for the 24 models on five datasets (i.e., [STERE](http://dpfan.net/wp-content/uploads/STERE_dataset_CVPR12.pdf),
[NLPR](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf),
[LFSD](http://dpfan.net/wp-content/uploads/LFSD_dataset_CVPR14.pdf),
[DES](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf), and [SIP](http://dpfan.net/wp-content/uploads/SIP_dataset_TNNLS20.pdf)
). We report the mean values of $S_{\alpha}$ and MAE across the five datasets. Note that these better models are shown in the upper left corner (\ie, with a larger $S_{\alpha}$ and smaller MAE).*======================= **run evaluation code** ===============================
1. We have computed values of different evaluation metrics for each image of each models and save as '***.mat', and the results can be downloaded from Google Drive or [Baidu Drive](https://pan.baidu.com/s/1kGRoErBvEzYY3t4pRxUSrA)(extraction code: urra).
2. Please unzip the downloaded file 'Sal_Det_Results_24_Models.zip' and put it into the file 'results';
3. To run 'run_overall_evaluation.m' (plot Fig.1 )======================================================================
![alt text](./figures/Fig_PR.jpg)
*Fig.2: PR curves for 24 RGB-D based models on [STERE](http://dpfan.net/wp-content/uploads/STERE_dataset_CVPR12.pdf),
[NLPR](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf),
[LFSD](http://dpfan.net/wp-content/uploads/LFSD_dataset_CVPR14.pdf),
[DES](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf),
[SIP](http://dpfan.net/wp-content/uploads/SIP_dataset_TNNLS20.pdf),
[GIT](http://www.bmva.org/bmvc/2013/Papers/paper0112/abstract0112.pdf),
[SSD](http://dpfan.net/wp-content/uploads/SSD_dataset_ICCVW17.pdf), and
[NJUD](http://dpfan.net/wp-content/uploads/NJU2K_dataset_ICIP14.pdf) datasets.*![alt text](./figures/Fig_F_curve.jpg)
*Fig.3: F-measures under different thresholds for 24 RGB-D based models on [STERE](http://dpfan.net/wp-content/uploads/STERE_dataset_CVPR12.pdf),
[NLPR](http://dpfan.net/wp-content/uploads/NLPR_dataset_ECCV14.pdf),
[LFSD](http://dpfan.net/wp-content/uploads/LFSD_dataset_CVPR14.pdf),
[DES](http://dpfan.net/wp-content/uploads/DES_dataset_ICIMCS14.pdf),
[SIP](http://dpfan.net/wp-content/uploads/SIP_dataset_TNNLS20.pdf),
[GIT](http://www.bmva.org/bmvc/2013/Papers/paper0112/abstract0112.pdf),
[SSD](http://dpfan.net/wp-content/uploads/SSD_dataset_ICCVW17.pdf), and
[NJUD](http://dpfan.net/wp-content/uploads/NJU2K_dataset_ICIP14.pdf) datasets.*======================= **run plot code** ===========================
1. To run 'run_plot_curves.m' (plot Fig.2 and Fig.3)=============================================================
------
------### Attribute-based Evaluation:
1. Downloading attribute datasets [Baidu Drive](https://pan.baidu.com/s/11CZ7njZ2X9CTKN8nGFlAog) (Code: tktz) or [Google Drive](https://drive.google.com/file/d/1DQ7y1I27FbkE4AA30gO4uInVWGgnz3A_/view?usp=sharing).
The complete RGB-D SOD benchmark can be found in this page:
[https://mmcheng.net/socbenchmark/](https://mmcheng.net/socbenchmark/)------
------If you find our survey paper and evaluation code are useful, please cite the following paper:
@article{zhou2020rgbd,
title={RGB-D Salient Object Detection: A Survey},
author={Zhou, Tao and Fan, Deng-Ping and Cheng, Ming-Ming and Shen, Jianbing and Shao, Ling},
journal={Computational Visual Media},
pages={1--33},
year={2021},
publisher={Springer}
}