Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tcapelle/apple_m1_pro_python
A collection of ML scripts to test the M1 Pro MacBook Pro
https://github.com/tcapelle/apple_m1_pro_python
Last synced: 14 days ago
JSON representation
A collection of ML scripts to test the M1 Pro MacBook Pro
- Host: GitHub
- URL: https://github.com/tcapelle/apple_m1_pro_python
- Owner: tcapelle
- Created: 2021-11-19T09:02:35.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-06-21T13:57:56.000Z (over 1 year ago)
- Last Synced: 2024-10-15T22:52:49.110Z (about 1 month ago)
- Language: Jupyter Notebook
- Size: 571 KB
- Stars: 167
- Watchers: 5
- Forks: 42
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Apple Silicon DL benchmarks
Currently we have PyTorch and Tensorflow that have Metal backend.
## Results
Varied results across frameworks:
- [Apple M1Pro Pytorch Training Results](https://wandb.me/pytorch_m1)
- [Apple M1Pro Tensorflow Training Results](https://wandb.me/m1pro)### Tensorflow Resnet50:
![tf_resnet_50results.png](images/tf_resnet50_results.png)### PyTorch Resnet50:
- Difference between CPU and GPU
![gpu_vs_cpu.png](images/pt_gpu_vs_cpu.png)
- Comparing with Nvidia
![samples_sec.png](images/pt_samples_sec.png)### PyTorch Bert
- Running a Bert from Huggingface
![pt_bert.png](images/pt_bert.png)## Pytorch
We have official PyTorch support! check [pytorch](pytorch) folder to start running your benchmarks## Tensorflow
You can run tensorflow benchmarks by going to the [tensorflow](tensorflow) folder.