Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tcapelle/timeseries_fastai
fastai V2 implementation of Timeseries classification papers.
https://github.com/tcapelle/timeseries_fastai
classification fastai pytorch timeseries ucr
Last synced: about 22 hours ago
JSON representation
fastai V2 implementation of Timeseries classification papers.
- Host: GitHub
- URL: https://github.com/tcapelle/timeseries_fastai
- Owner: tcapelle
- License: apache-2.0
- Created: 2019-09-26T08:47:46.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2022-10-20T05:58:06.000Z (about 2 years ago)
- Last Synced: 2024-10-30T21:03:43.277Z (15 days ago)
- Topics: classification, fastai, pytorch, timeseries, ucr
- Language: Jupyter Notebook
- Homepage: https://tcapelle.github.io/timeseries_fastai/
- Size: 7.77 MB
- Stars: 239
- Watchers: 11
- Forks: 18
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# timeseries_fastai
> This repository aims to implement TimeSeries classification/regression algorithms. It makes extensive use of fastai V2!> I recommend to use Ignacio's [tsai](https://github.com/timeseriesAI/tsai) for a more complete and robust timeseries fastai based library. It is well documented and implemetns way more models that me here.
## Installation
You will need to install fastai V2 from [here](https://github.com/fastai/fastai) and then you can do from within the environment where you installed fastai V2:
```bash
pip install timeseries_fastai
```and you are good to go.
### TL;DR
```bash
git clone https://github.com/fastai/fastai
cd fastai
conda env create -f environment.yml
source activate fastai
pip install fastai timeseries_fastai```
## Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline
The original paper repo is [here](https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline) is implemented in Keras/Tf.- Notebook 01: This is a basic notebook that implements the Deep Learning models proposed in [Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline](https://arxiv.org/abs/1611.06455).
## InceptionTime: Finding AlexNet for Time SeriesClassification
The original paper repo is [here](https://github.com/hfawaz/InceptionTime)- Notebook 02: Added InceptionTime architecture from [InceptionTime: Finding AlexNet for Time SeriesClassification](https://arxiv.org/pdf/1909.04939.pdf).
## Results
You can run the benchmark using:
`$python ucr.py --arch='inception' --tasks='all' --filename='inception.csv' --mixup=0.2`
### Default Values:
- `lr` = 1e-3
- `opt` = 'ranger'
- `epochs` = 40
- `fp16` = True```python
results_inception = pd.read_csv(Path.cwd().parent/'inception.csv', index_col=0)
display_df(results_inception)
```
acc
acc_max
train_loss
val_loss
task
ACSF1
0.82
0.85
0.77
0.62
Adiac
0.77
0.77
0.81
0.89
ArrowHead
0.70
0.76
0.28
1.21
BME
0.85
0.88
0.21
0.79
Beef
0.77
0.83
0.50
0.53
BeetleFly
0.70
0.85
0.14
0.79
BirdChicken
0.95
0.95
0.14
0.20
CBF
0.95
0.97
0.22
0.24
Car
0.60
0.68
0.33
1.23
Chinatown
0.95
0.96
0.05
0.27
ChlorineConcentration
0.82
0.82
0.28
0.48
CinCECGTorso
0.58
0.60
0.42
1.60
Coffee
0.71
0.82
0.16
0.71
Computers
0.66
0.72
0.24
0.72
CricketX
0.72
0.73
0.49
0.88
CricketY
0.71
0.72
0.53
0.84
CricketZ
0.77
0.78
0.52
0.79
Crop
0.78
0.78
0.56
0.76
DiatomSizeReduction
0.93
0.96
0.22
0.22
DistalPhalanxOutlineAgeGroup
0.71
0.75
0.18
0.80
DistalPhalanxOutlineCorrect
0.74
0.78
0.16
0.57
DistalPhalanxTW
0.62
0.68
0.27
1.22
ECG200
0.87
0.91
0.15
0.30
ECG5000
0.94
0.94
0.17
0.27
ECGFiveDays
0.92
0.94
0.14
0.21
EOGHorizontalSignal
0.36
0.40
0.63
2.05
EOGVerticalSignal
0.37
0.39
0.79
2.00
Earthquakes
0.75
0.75
0.12
0.89
ElectricDevices
0.71
0.72
0.36
1.20
EthanolLevel
0.32
0.36
0.61
1.81
FaceAll
0.77
0.78
0.46
0.84
FaceFour
0.83
0.89
0.29
0.57
FacesUCR
0.83
0.83
0.51
0.73
FiftyWords
0.67
0.69
0.70
1.27
Fish
0.83
0.83
0.45
1.69
FordA
0.95
0.95
0.18
0.13
FordB
0.83
0.85
0.16
0.38
FreezerRegularTrain
0.98
0.99
0.20
0.10
FreezerSmallTrain
0.71
0.81
0.21
1.54
Fungi
0.77
0.85
0.31
0.68
GunPoint
0.95
0.97
0.17
0.14
GunPointAgeSpan
0.97
0.98
0.25
0.08
GunPointMaleVersusFemale
1.00
1.00
0.17
0.02
GunPointOldVersusYoung
1.00
1.00
0.13
0.01
Ham
0.55
0.66
0.21
1.12
HandOutlines
0.89
0.91
0.25
0.29
Haptics
0.38
0.43
0.44
1.94
Herring
0.61
0.70
0.19
0.82
HouseTwenty
0.85
0.88
0.18
0.39
InlineSkate
0.30
0.31
0.95
2.05
InsectEPGRegularTrain
1.00
1.00
0.28
0.08
InsectEPGSmallTrain
0.80
1.00
0.49
0.48
InsectWingbeatSound
0.55
0.56
0.65
1.27
ItalyPowerDemand
0.96
0.96
0.14
0.16
LargeKitchenAppliances
0.85
0.86
0.28
0.69
Lightning2
0.70
0.77
0.18
0.73
Lightning7
0.71
0.73
0.46
1.10
Mallat
0.65
0.66
0.43
1.37
Meat
0.93
0.95
0.25
0.26
MedicalImages
0.72
0.75
0.40
0.85
MelbournePedestrian
0.10
0.10
nan
nan
MiddlePhalanxOutlineAgeGroup
0.53
0.60
0.20
1.28
MiddlePhalanxOutlineCorrect
0.77
0.81
0.17
0.46
MiddlePhalanxTW
0.49
0.59
0.34
1.37
MixedShapesRegularTrain
0.93
0.93
0.35
0.25
MixedShapesSmallTrain
0.80
0.81
0.42
0.64
MoteStrain
0.75
0.76
0.09
0.52
NonInvasiveFetalECGThorax1
0.92
0.93
0.66
0.32
NonInvasiveFetalECGThorax2
0.93
0.93
0.59
0.27
OSULeaf
0.82
0.84
0.43
0.58
OliveOil
0.77
0.80
0.27
0.74
PhalangesOutlinesCorrect
0.81
0.83
0.17
0.46
Phoneme
0.22
0.22
0.79
3.25
PigAirwayPressure
0.12
0.14
2.33
4.06
PigArtPressure
0.47
0.47
1.25
2.25
PigCVP
0.30
0.33
1.69
2.97
Plane
1.00
1.00
0.35
0.07
PowerCons
0.98
0.98
0.17
0.10
ProximalPhalanxOutlineAgeGroup
0.83
0.87
0.22
0.53
ProximalPhalanxOutlineCorrect
0.88
0.89
0.17
0.34
ProximalPhalanxTW
0.78
0.80
0.28
0.78
RefrigerationDevices
0.50
0.56
0.27
1.35
Rock
0.58
0.78
0.29
1.43
ScreenType
0.42
0.43
0.33
1.41
SemgHandGenderCh2
0.73
0.79
0.21
0.52
SemgHandMovementCh2
0.35
0.40
0.43
1.56
SemgHandSubjectCh2
0.52
0.52
0.39
1.13
ShapeletSim
0.99
1.00
0.14
0.12
ShapesAll
0.80
0.80
0.89
0.83
SmallKitchenAppliances
0.65
0.66
0.43
1.60
SmoothSubspace
0.96
0.97
0.23
0.15
SonyAIBORobotSurface1
0.87
0.90
0.08
0.29
SonyAIBORobotSurface2
0.75
0.79
0.15
0.54
StarLightCurves
0.98
0.98
0.22
0.09
Strawberry
0.97
0.98
0.15
0.09
SwedishLeaf
0.94
0.94
0.52
0.27
Symbols
0.83
0.87
0.39
0.61
SyntheticControl
1.00
1.00
0.31
0.04
ToeSegmentation1
0.93
0.97
0.16
0.17
ToeSegmentation2
0.88
0.91
0.15
0.27
Trace
1.00
1.00
0.29
0.02
TwoLeadECG
0.91
0.92
0.10
0.26
TwoPatterns
1.00
1.00
0.25
0.01
UMD
0.92
0.94
0.25
0.26
UWaveGestureLibraryAll
0.91
0.91
0.41
0.31
UWaveGestureLibraryX
0.82
0.82
0.46
0.56
UWaveGestureLibraryY
0.73
0.73
0.50
0.78
UWaveGestureLibraryZ
0.74
0.74
0.48
0.72
Wafer
1.00
1.00
0.05
0.01
Wine
0.48
0.63
0.19
1.07
WordSynonyms
0.62
0.62
0.61
1.60
Worms
0.77
0.78
0.41
0.70
WormsTwoClass
0.73
0.81
0.22
0.56
Yoga
0.86
0.86
0.24
0.33
## Getting Started
```python
from timeseries_fastai.imports import *
from timeseries_fastai.core import *
from timeseries_fastai.data import *
from timeseries_fastai.models import *
``````python
PATH = Path.cwd().parent
``````python
df_train, df_test = load_df_ucr(PATH, 'Adiac')
```Loading files from: /home/tcapelle/SteadySun/timeseries_fastai/Adiac
```python
x_cols = df_train.columns[0:-2].to_list()
``````python
dls = TSDataLoaders.from_dfs(df_train, df_test, x_cols=x_cols, label_col='target', bs=16)
``````python
dls.show_batch()
```![png](docs/images/output_17_0.png)
```python
inception = create_inception(1, len(dls.vocab))
``````python
learn = Learner(dls, inception, metrics=[accuracy])
``````python
learn.fit_one_cycle(1, 1e-3)
```epoch train_loss valid_loss accuracy time
0 3.934007 3.640701 0.043478 00:03